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Abstract–  

In this article, an analysis of the Higgs boson production via 

vector boson fusion in the SM H→WW→ 2l2ν (l = e, μ) is 

performed from an optimization technique in the event 

selection, called DNN analysis. This analysis compares the 

standard selection process that CERN performs to study the 

production of a particle from a cut-based analysis, where the 

study of statistical significance shows that DNN analysis can 

better separate signal and background events. To perform the 

DNN analysis, we optimized the neural network configuration 

to discriminate signal and background events effectively. 

Moreover, studies of activation functions such as RELU and 

Sigmoid, stochastic optimization methods such as ADAM, and 

regularization methods such as Dropout. All this leads to 

constructing an optimal neural network topology capable of 

learning events and signal and background discrimination. 

Finally, we found an important improvement of approximately 

47 % and 27 % for 𝑍𝑉𝐵𝐹  and 𝑍𝐻𝑖𝑔𝑔𝑠, respectively. 

 
 

I.  INTRODUCTION 

In recent years, deep artificial neural networks (including 

recurrent ones) have won numerous contests in pattern 

recognition and machine learning [1]. Deep learning is making 

major advances in solving problems that have resisted the best 

attempts of the artificial intelligence community for many years 

[2]. Deep learning techniques are applied in some fields' 

Natural language processing, information retrieval, analysis of 

social networks, transportation prediction and sound processing 

[3]. A simple technique to extract the dark knowledge of a Deep 

Multi-Column Deep Learning Network and its compression 

into a shallow neural network (NN) causing not only the 

improvement of the train and test performance of the latter but 

a cheap way to approximate the former results but with fewer 

parameters [4]. Single units in a deep neural network (DNN) 

functionally correspond with neurons in the brain [5]. 

Multifaceted feature visualization can better understand deep 

neural networks by identifying which features each of their 

neurons have learned to detect [6]. Deep learning relies on 

multiplier layers of nodes and many edges linking the nodes 

forming input/output (I/O) layered grids representing a 

multiscale processing network [7].  

The Higgs model is a keystone of the Standard Model and its 

supersymmetric extensions [8]. The Higgs is a massive and 

unstable boson with an extremely short half-life estimated to be 

about 1.56 × 10−22 seconds. Bosons are produced as part of the 

proton scattering process and are detected through their decay 

products.  The collision of W or Z vector bosons can produce 

the Higgs boson, this process is called vector boson fusion 

(VBF) and it is represented as WWH and ZZH. Analogously 

there are other Higgs production channels such as gluon 

collisions, also by photon annihilation [9]. 

As the Higgs is created, it decays into a variety of particles, 

including quarks, photons, electrons, and muons. To determine 

if the Higgs boson exists, the energy and momentums of these 

particles are measured by the ATLAS and CMS detectors in the 

Large Hadron Collider (LHC) [10]. They use Monte Carlo 

event simulation techniques [11], and statistical analysis such 

as principal component and discriminant analysis to extract 

significant features from the data and classify Higgs boson 

decay events. In addition, artificial intelligence and machine 

learning have been used to identify patterns and trends in 

experimental data. 

Under this context, machine learning optimization techniques 

are used to change the weights of a neural network during the 

time it's trained. Methods such as Stochastic Gradient Descent 

(SGD), Root Mean Square Propagation (RMSprop), 

ADADELTA, and Adaptive Gradient (ADAGRAD) are the 

most used. The efficient training of neural networks in deep 

learning depends on optimization methods or optimizers. Many 

studies have compared different optimizers for training neural 

models, showing that certain optimizers work better for specific 

problems. The adaptive gradient descent optimization 

technique ADAM, modifies the learning step sizes for each 

parameter separately [12]. Stochastic Gradient Descent (SGD) 

is a traditional gradient descent optimization technique that 

modifies the network weights in accordance with the gradient 

of the loss function's opposite direction [13]. In terms of 

convergence and efficiency, ADAM can be more successful in 

DNN training than SGD and is typically quicker than SGD [14]. 

Moreover, ADAM is more resilient in terms of choosing the 

learning step size, necessitating less hyperparameter adjustment 

than SGD. This allows simula 
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ted or actual users to interact with the model in real-time 

ADAM is able to improve the performance of a wide and deep 

neural network [15]. Then, ADAM, the most widely used 

machine learning optimizer compare others, because it is faster 

and more efficient, is an optimization method based on 

stochastic functions using algorithms that properly combine the 

weights and biases to minimize the loss, this combination 

allows to calculate a learning rate (the network learns not to 

over train and minimizes the loss). 

 

The aim of this work is to measure the production of Higgs in 

the full Leptonic Channel via Vector Boson Fusion taking data 

from 2016. H 𝑊+𝑊− decay at a √𝑠 of 13 TeV utilizing a total 

L's of 35.9 𝑓𝑏−1 gathered from proton-proton collisions at the 

LHC base on the DNN. 

 

II. THEORETICAL FRAMEWORK  

The connections between the neurons are achieved by arranging 

the neurons in layers. Typically, each layer receives inputs from 

the preceding layer, with the first layer getting inputs from the 

input layer. The input layer nodes serve as the Neural Network 

(NN) variables. The final output of the NN is generated by the 

last layer and is depicted in Figure 1. 

 

 
Figure 1. Schematic depiction of a layered ANN (densely connected 

feed forward network). 

When designing a NN, one choice to be made is the connection 

between the output of one layer and the input of the next layer, 

as well as the internal structure of the layers. The most widely 

used structure is the fully connected layer, where each neuron 

receives the output of every node in the previous layer as input. 

The latter leads to a straightforward mathematical description 

of the NN: if 𝑥0 is the vector of input values, the output of the 

following layer of neurons is represented by ℎ1 = 𝑓(𝑤0 ∙ 𝑥0 +
𝑏0).  Here, the layer is identified as ℎ1. The layers between the 

input and output layers are referred to as hidden layers. The 

activation function of the neurons in this layer is represented by 

𝑓. The weight matrix, 𝑤0, contains a vector of weights for each 

neuron, and the bias vector, 𝑏 , holds a bias value for each 

neuron. The output of the subsequent layer would be designated 

as ℎ2 = 𝑓(𝑤1 ∙ 𝑥1 + 𝑏1). Therefore, a recursive mathematical 

representation of the entire network is represented by, 

 

ℎ𝑖+1 = 𝑓(𝑤𝑖 ∙ 𝑥𝑖 + 𝑏𝑖)                            (1) 

 

where 𝑥𝑖 = ℎ𝑖 . The equation (1) applies to all feed-forward 

networks, where there are no loops, and a neuron output does 

not impact its input. In addition, there are various other layer 

types, such as pooling layers, convolutional layers, and dropout 

layers. However, only dropout layers, which serve as a 

regularization technique, are utilized and addressed in this study 

context [16]. 

 

A. Activation Functions 

 

The selection of the activation function for the neurons in a 

neural network is a crucial aspect of its design. This decision 

holds especially significant weight when considering the output 

layer, as the activation function of this layer sets the limits of 

the possible values the output can take. It defines the shape of 

the network output with respect to its inputs. In this section, we 

will examine and discuss some of the most frequently used 

activation functions. 

 

The Rectified Linear Units (RELU) are the most commonly 

used activation functions, as seen in Figure 2 (right). They are 

defined as 𝑓(𝑧) = (0, 𝑧) , meaning that the output of a RELU 

neuron is equal to the weighted input of the neuron, 𝑤𝑖[𝑗] ∙ ℎ𝑖, 

if it is greater than a threshold of −𝑏𝑖[𝑗], or zero otherwise. 

 

 
Figure 2. Sigmoid and RELU activation functions. 

One advantage of using RELU units is their ease of 

computation. However, there is a downside in that they can 

"die," meaning if their output becomes zero, it is possible that 

the training algorithm of the neural network will not find a 

weight update that brings the output back to a non-zero value. 

The latter is because most algorithms rely on gradient descent, 

and the gradient for negative values of 𝑤𝑖[𝑗] ∙ ℎ𝑖 + 𝑏𝑖[𝑗] is 

simply zero. 

 

Neurons with step function activation, known as perceptrons, 

played a crucial role in the evolution of neural networks. They 

were used to construct logical functions such as AND, OR, and 

NAND, which are the fundamental building blocks for all other 

functions in a computer. 

Sigmoid units represent a more generalized form of perceptrons 

capable of producing a non-binary output. The sigmoid function 

is defined as 𝜎(𝑧)  =  (1 + 𝑒−𝑧)−1, as seen in Figure 2 (left), 
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with 𝑧  being represented in the same manner as the RELU 

units. 

 

The sigmoid function can map its inputs to a range of values 

between 0 and 1, making it useful for binary classification tasks 

in the output layer of a neural network. Its continuous nature 

also allows for efficient gradient calculations during training 

compared to non-differentiable functions like the step function. 

However, as with the RELU function, the sigmoid can suffer 

from small gradients for extremely high or low input values, 

causing neurons to become unresponsive to weight changes in 

the network. RELU is used in the input to address this, and 

hidden layers of the neural network are RELU. In contrast, a 

sigmoid function is used in the output layer to ensure that the 

sum of all outputs is one and that individual outputs fall within 

the [0,1] range. 

 

B. Training of a neural network 

 

When training a neural network, the fundamental approach is to 

compare its output on a given training input to a known target 

output. This comparison allows the modification of the weights, 

biases, and other trainable parameters of the neurons to enhance 

the alignment between the computed and target output. As such, 

the trainable parameters are typically initialized randomly at the 

start of the training process. 

 

One common approach for weight initialization is to randomly 

sample values from a Gaussian distribution centered at zero 

with a standard deviation of one. However, there exist various 

other methods for weight initialization. An alternative approach 

is to initialize weights from a Normal distribution, where most 

values are clustered around the mean (e.g., 𝜇 ≈ 0). Another 

option is to use a Uniform distribution, where each value has an 

equal probability of being selected. In this analysis, both normal 

and uniform initialization techniques were employed. These 

methods can enhance the convergence behavior of the network 

during training, ultimately reducing the time required to train 

the network model. 

 

Once the weights are initialized, a loss function is computed to 

measure the discrepancy between the predicted output and the 

desired output. Subsequently, a gradient-based algorithm is 

typically employed to minimize this loss, improving the 

agreement between the neural network output and the training 

data. For classification tasks with an output node for each class, 

the cross-entropy function (S) is commonly utilized. This 

function is defined as follows: 

 

𝑆 = −
1

ℎ
∑𝑥 ∑𝑦 [𝑦𝑗 ∙𝑙𝑛 𝑙𝑛 (𝑧𝑗)  + (1 − 𝑦𝑗) ∙𝑙𝑛 (1 − 𝑧𝑗) ]      

(2) 

In this equation, the 𝑧𝑖  represents the outputs of the distinct 

output neurons responsible for classifying the input, while 𝑦𝑖  

represents the desired output neuron values. 

 

The minimization algorithm proceeds by iteratively adjusting 

the weights and biases in order to minimize the loss. One of the 

most straightforward algorithms used for this purpose is 

gradient descent, which involves calculating the derivative of 

the loss function with respect to the weight and bias parameters 

and adjusting them in the direction of the descending gradient 

with a variable step size. This step size is commonly referred to 

as the learning rate, and it is a tunable parameter in the network 

architecture. Typically, the learning rate is gradually reduced 

over time as the minimum is approached, a technique known as 

learning rate decay. 

 

A technique that was attempted is called ADAM (Adaptive 

Moment Estimation), which is discussed in [17]. This algorithm 

is utilized for first-order gradient-based optimization of 

stochastic objective functions and is based on adaptive 

estimates of lower-order moments. Other commonly used 

algorithms include basic SGD, RMSprop, ADADELTA, and 

ADAGRAD. 

 

C. Regularization 

 

Overtraining is a common issue that may arise during the 

training of a neural network. The latter means that the network 

may learn patterns within the training data that are purely 

statistical and do not exist in the broader data set that the 

network is intended to describe. With the purpose of mitigating 

this effect, a portion of the training data is typically reserved for 

testing the network's performance on an independent data set. 

In contrast, the network is being trained on the remaining data. 

 

When the loss function of the training data becomes smaller 

than that of the test data, the neural network begins to prioritize 

the statistical artifacts present in the training data. The latter is 

likely to occur over time, particularly when the network has 

learned most of the relevant features within the data or when 

there is inadequate training data, given the number of trainable 

parameters. Therefore, to treat the problem of overtraining, one 

possible approach is regularization, which includes commonly 

used techniques such as dropout layers. 

 

The first technique involves extending the loss function by 

adding a penalty term of −
1

2
𝜆𝜔2, which is the squared sum of 

all weights and biases in the network multiplied by the strength 

of the regularization. This approach penalizes large individual 

weights within the network, which may indicate the over-

reliance on a single input in certain network parts. Therefore, 

by doing so, it encourages the network to consider the broader 

patterns in the data rather than focusing solely on the 

distribution and fluctuations of a single input parameter. 

 

The concept of dropout layers [18] represents a distinct 

approach to network averaging. In a dropout layer, nodes within 

the associated layer are randomly deactivated, temporarily 

removing them from the network as depicted in Fig. 3. In this 
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way, a different sub-network of the original network is trained 

in each iteration, effectively training multiple networks with 

shared neurons simultaneously. This approach has been 

demonstrated to prevent overtraining and enhance the network's 

performance. 

 

 
Figure 3. Dropout neural net model: A standard NN, from bottom to 

top, with 2 hidden layers as an example of a thinned net produced by 

applying dropout to the network on the left. 

 

 

II. METHODOLOGY 
    

This analysis primarily focuses on utilizing Deep Neural 

Networks (DNNs) to discriminate VBF signals from main 

backgrounds. The general functioning of DNNs has been 

explained earlier. This section provides an initial exploration of 

using DNNs in the VBF analysis. The knowledge and insights 

gained from these initial DNN tests are then used to construct 

an NN selector, which can effectively differentiate between 

signal and background. The applicability of this classifier for 

signal and background discrimination is then discussed. The 

DNNs were constructed using KERAS [19] with THEANO 

[20] and TensorFlow [21] backends. The data and MC samples 

employed here are the same as those used in the related VBF 

analysis, but the present work is limited to the full leptonic 

decay channel. 

 

A. Analysis strategy 

 

Many discrimination methods begin by defining kinematic 

observables and analyzing their distributions. A specialized 

algorithm is then employed to identify the most effective 

discriminatory variables. These variables serve as inputs for 

various discrimination techniques, whose efficacy is evaluated 

based on the values of the configuration parameters. 

 

In the HWW VBF analysis, it is necessary to discriminate 

between several backgrounds and the signal. The primary 

backgrounds include the DY, WW, and TOP processes, with 

the ggH process also considered a background. The DNNs were 

evaluated individually for each background to consider their 

distinct differences from the signal. However, the optimal 

performance was achieved when all backgrounds were 

considered together. 

 

The DNN strategy is devised to attain high efficacy in 

background suppression. The methodology created can be 

categorized into the subsequent steps: 

 

1) Specify a preliminary group of low-level variables to serve 

as inputs for the DNN. 

2) Define the dataset for both signal and background events. 

3) Train, validate, and test the DNN using previously defined 

data sets. It is important to mention that during DNN training, 

the efficacy and stability of the DNN rely on the values of the 

tuning parameters, primarily selected through a cross-

validation technique to prevent overfitting. 

4) The efficacy of the DNN is evaluated using classifier 

methods like the receiver operating characteristic (ROC) 

curves, which showcase the diagnostic ability of a binary 

classifier system while varying the discrimination threshold. 

The Area under the ROC curve (AUC) serves as a degree or 

metric of separability. It indicates the extent to which the model 

can differentiate between classes. A higher AUC signifies that 

the model is more proficient in accurately predicting 0s as 0s 

and 1s as 1s. It is important to mention that we use the AUC 

due to the small amount of data.  

 

In this analysis, the approach does not involve constructing 

high-level variables (which are created with previous 

discrimination). Instead, variables corresponding to the final 

state objects 𝑝𝑇 , 𝜂 , and 𝜙  for leptons and jets-containing all 

pertinent information of the final state are utilized, as indicated 

in Table 1. The superscript represents the final state, 𝑙1 is the 

first lepton, 𝑙2  is the second lepton, 𝑗1  is the jet due to the 

defragmentation of the first quark packet, and 𝑗2 is the jet due 

to the defragmentation of the second quark packet  

 
Table 1. Kinematic variables used as DNN inputs 

Variables Description 

𝑝𝑇
𝑙1 , 𝜂𝑙1 , 𝜙𝑙1  Leading lepton 𝑝𝑇 , 𝜂, and 𝜙 

𝑝𝑇
𝑙2 , 𝜂𝑙2 , 𝜙𝑙2  Trailing lepton 𝑝𝑇 , 𝜂, and 

𝑝𝑇
𝑗1 , 𝜂𝑗1 , 𝜙𝑗1 Leading jet 𝑝𝑇 , 𝜂, and 𝜙 

𝑝𝑇
𝑗2 , 𝜂𝑗2 , 𝜙𝑗2 Trailing jet 𝑝𝑇 , 𝜂, and 

 

For the purpose of training deep neural networks, the dataset is 

selected by applying all cuts that define the signal region, 

except for the high-level cuts: |∆𝜂𝑗𝑗| > 3.5 and |𝜂𝑙𝑖 − (𝜂𝑗1 +

𝜂𝑗2)/2|/|∆𝜂𝑗𝑗| < 0.5. Tables 2 and 3 display this dataset and 

its division for each 𝑚𝑗𝑗 region. Therefore, signal samples are 

utilized for other Higgs masses to enhance the statistics of 

signal events while maintaining an appropriate balance between 

signal and background events. 
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Process 2016 low 𝑚𝑗𝑗  2016 high 𝑚𝑗𝑗  

qqH (𝑚𝐻 = 125 GeV) 1.2 K 2.7 K 

qqH (other masses) 2.6 K 2.7 K 

ggH (𝑚𝐻 = 125 GeV) 0.1 K 0.1 K 

WW 0.4 K 0.2 K 

DY 0.4 K 0.2 K 

TOP 4.5 K 2.1 K 

𝛴 Signal 3.7 K 5.4 K 

𝛴 Background 5.4 K 2.6 K 

Table 2. Number of events used in DNN for each sample and dataset 

split. 

 

Training Testing Validation 

90 % 10 % 20 % train 

80 % 20 % 20 % train 

75 % 25 % 20 % train 

70 % 30 % 20 % train 

60 % 40 % 20 % train 

50 % 50 % 20 % train 
Table 3. Dataset split used in DNN for each sample. 

 

B. Neural network building 

 

Keras, a Python library for developing and evaluating deep 

learning models, is known for its powerful yet user-friendly 

features. It leverages the efficient numerical computation 

libraries Theano and TensorFlow, enabling you to define and 

train neural network models with just a few lines of code. The 

following steps are involved in this process. 

 

Load data 

When working with machine learning algorithms that rely on 

stochastic processes, such as random numbers, it is advisable to 

set the random number seed. The latter ensures that the same 

code can be executed multiple times and produce identical 

results. Therefore, this is particularly helpful for demonstrating 

results or comparing algorithms using the same randomness 

source. 

Moreover, to facilitate the use of the dataset described in Table 

9, which includes a set of variables per event related to binary 

classification, signal events should be defined as 1 and 

background as 0. Consequently, this allows for direct use with 

neural networks, which require numeric input and output 

values. In addition, data can be loaded directly using the 

NumPy tool, a Python extension that provides extensive support 

for working with vectors and arrays. The dataset consists of 12 

input variables (selected from Table 1) and one output variable 

(the last column), the class variable. 

After loading, the dataset can be divided into input variables 

(X) and output class variables (Y). The random number 

generator should be initialized to ensure the reproducibility of 

the results. With the data loaded and the random number 

generator initialized, the next step is to define the neural 

network model. 

Define model 

In Keras, models are constructed as a sequence of layers; each 

added one at a time until the desired network topology is 

achieved. A fully connected multi-layer network structure is 

utilized for the analysis at hand. It includes an input layer with 

12 neurons corresponding to the 12 variables, one or more inner 

layers with a large number of neurons, and an output layer with 

1 neuron to predict the signal or background class. 

To initialize the network weights, a small random number is 

generated from either a uniform or Gaussian distribution, 

depending on the layer. A uniform distribution is used for the 

output layer to generate random weights between 0 and 0.05, a 

standard uniform weight initialization in Keras. A "normal" 

distribution is used for all other layers to generate small random 

numbers from a Gaussian distribution. 

Therefore, a sequential model is created to implement the latter, 

and the layers are added using appropriate initialization 

methods and activation functions. It allows for greater control 

over the network topology and can improve the accuracy of the 

final model. 

Compile model 

After defining the model, the next step is to compile it. Then, 

Keras utilizes efficient numerical libraries (also known as the 

"backend"), such as Theano or TensorFlow, to represent the 

network for training and prediction. The backend automatically 

chooses the best way to run the network on hardware, including 

CPU or GPU, and can even distribute computation across 

multiple devices. 

During compilation, we must specify additional properties 

necessary to train the network and find the best weights to 

predict this problem. It includes specifying the loss function 

used to evaluate a set of weights, the optimizer used to search 

for different weights, and any optional metrics we want to 

collect and report during training. 

In this analysis, we will use binary cross-entropy, the 

logarithmic loss function defined in Keras, for binary 

classification problems. We will also use the efficient ADAM 

gradient descent algorithm as the optimizer. These choices can 

significantly impact the performance of the model, and 
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selecting appropriate loss functions and optimizers is an 

essential part of building an effective neural network. 

Fit model 

To train our loaded model, we can call the fit function. The 

training process involves iterating through the data set for a 

fixed number of epochs, each comprising several weight 

updates based on a batch of instances. The batch size refers to 

the cases evaluated before each weight update. In this analysis, 

we experimented with different values for the number of 

iterations and the batch size, ultimately choosing around 400-

1000 iterations and batch sizes of 10 and 50 for low and high 

𝑚𝑗𝑗, respectively. These values were selected through a process 

of trial and error. 

Evaluate the model 

To accurately evaluate the model's performance, it is ideal to 

separate the dataset into training, testing, and evaluation sets. 

However, for simplicity, we trained the NN on the entire dataset 

and evaluated its performance on the same dataset. While this 

approach gives us an idea of the model's accuracy, we must 

determine how well the algorithm can perform on new data. To 

evaluate the model's performance on the training dataset, we 

used the evaluation function in the model, passing the same 

input and output used to train the model. Thus, it generated a 

prediction for each pair of input and output and collected scores, 

including the average loss and any metrics set, such as accuracy. 

We separated 80 % of the events for training and 20 % for 

testing, with 20 % of the training set used for validation, as 

selected from Table 4. 

Parameter Test values 

Hidden layers 1, 2, 3, 4, 5, 6 

Nodes per layer 4, 24, 48, 72, 96, 120, 240, 10 K 

Batch size 5, 10, 20, 50 

Epochs 200, 400, 1 K, 2 K, 5 K 

Dropout per layer 10 %, 15 %, 20 %, 25 % 

Table 4. Configurations for the DNN optimization. 

III. RESULTS 

Fine-tuning the parameters has maximized the network's 

performance, which was measured using the AUC metric on the 

validation dataset. However, we had to make many decisions 

when designing and configuring the DNN models. We 

empirically resolved most of these decisions by testing them on 

real data through trial and error. Therefore, it's crucial to have a 

robust evaluation method to measure the performance of DNN 

models. 

We trained the NNs until the accuracy on the training and 

validation datasets stopped increasing, which prevented 

overfitting and maximized the achievable classification 

performance. Figure 4 and Figure 5 present a robust method for 

evaluating the performance of DNN models, considering a good 

analysis strategy and correct construction method. Figure 4 and 

Figure 5 compare the model accuracy and loss for each epoch 

in the training and validation sets of the best DNN 

configurations in low and high regions.  

 
Figure 4. Model accuracy and loss for low 𝑚𝑗𝑗  regions. Training and 

validation along training epochs for best DNN configurations. 

 
Figure 5. Model accuracy and loss for high 𝑚𝑗𝑗  regions. Training and 

validation along training epochs for best DNN configurations. 

Usually, increasing the amount of training leads to higher 

accuracy. However, this is not always the case, and in some 

situations, it may be beneficial to terminate training early. The 

model may only fit the training and test datasets if sufficient 

training exists. Conversely, excessive training can overfit the 

training data and result in poor performance on the test set. 



21st LACCEI International Multi-Conference for Engineering, Education, and Technology: “Leadership in Education and Innovation in Engineering in the Framework of Global 

Transformations: Integration and Alliances for Integral Development”, Hybrid Event, Buenos Aires - ARGENTINA, July 17 - 21, 2023.   7 

Therefore, to mitigate this issue, we utilized the following 

regularization techniques: 

● Early stopping: Stop training when the performance on 

a validation dataset begins to deteriorate. 

● Dropout: Remove inputs during training in a 

probabilistic manner. 

 

To maximize the separation of background and signal events, a 

number between 0 and 1, called score, is the output of a binary 

classifier neural network. Figure 6 and Figure 7 shows the score 

distributions for the signal and background samples of both 

NNs, and the DNN discriminator demonstrates a good 

separation ability between the two classes.  

     

 
Figure 6. Score distribution for low  𝑚𝑗𝑗  regions. DNN discrimination 

for training and testing datasets for best DNN configurations. The 

horizontal and vertical axes represent the new discrimination variable 

(DNNvar) and the number of events, respectively.  

 
Figure 7. Score distribution for high 𝑚𝑗𝑗  regions. DNN discrimination 

for training and testing datasets for best DNN configurations. The 

horizontal and vertical axes represent the new discrimination variable 

(DNNvar) and the number of events, respectively.  

 

Figure 8 and Figure 9 display the ROC curves, which illustrate 

the performance of the DNN discriminator for the signal and 

background samples. The AUC, a measure of classification 

accuracy, ranges from 82 % to 98 % for the low and high MJJ 

regions, indicating that our models efficiently discriminate 

between the signal and background by improving signal 

efficiency and background rejection. 

 

 
Figure 8. DNN performances for low 𝑚𝑗𝑗  regions. ROC curve for 

training and testing datasets for best DNN configurations. 

 
Figure 9. DNN performances for low 𝑚𝑗𝑗  regions. ROC curve for 

training and testing datasets for best DNN configurations. 

We added a discriminant variable, DNNvar, to the trees of all 

the samples in this analysis. It is possible to utilize the shape of 
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this variable for constructing a likelihood fit to extract the 

expected signal significance within the statistical analysis. The 

latter is known as the shape-based analysis of this variable, 

consisting of 10 bins ranging from 0 to 1, as shown in Figure 

10 and Figure 11. This variable is the most effective in 

discriminating the background from the signal. 

 

 
Figure 10. DNN variable for low 𝑚𝑗𝑗  regions after all the selections of 

the 2 jets VBF analysis with 2016 data. 

 
Figure 11. DNN variable for high 𝑚𝑗𝑗  regions after all the selections 

of the 2 jets VBF analysis with 2016 data. 

In the VBF analysis using DNN, we combined the expected 

significance (𝑍)  measurement for the low and high 𝑚𝑗𝑗  regions 

without the 𝛥𝜂𝑗𝑗 cut: 𝑍𝑉𝐵𝐹  =  2.2 𝜎  and  𝑍𝐻𝑖𝑔𝑔𝑠 =  2.8 𝜎. 

The latter is a crucial result compared to the CMS experiment 

results [22] that study only the cuts analysis, a standard 

selection process, whose results are less significant, using 𝛥𝜂𝑗𝑗 

cut: VBF analysis without DNN: 𝑍𝑉𝐵𝐹  =  1.5 𝜎  and  𝑍𝐻𝑖𝑔𝑔𝑠 =

 2.2𝜎 . 

 

The main reason for developing a deep neural network is to 

effectively suppress the background in measuring VBF Higgs 

production in the full leptonic channel. Developing an 

algorithm to construct a signal and background discriminant 

accomplished this task. We trained a set of simulated signal and 

background events to identify kinematic differences between 

the two processes. Therefore, we design each event to be more 

or less compatible with the signal or background topology. In 

this way, it is possible to improve the discrimination between 

signal and background with the purpose of background 

rejection and that the signal efficiency is both high and uniform 

for the signal process studied. 

 

Using the tool, we combined the two studied subcategories (low 

and high 𝑚𝑗𝑗) and extracted the results while considering all the 

correlations among the phase spaces. We turn the integrated 

data card into a RooFit workspace that implements a physics 

model defining the parameters of interest. We used the same 

combined data card to create different workspaces based on 

various physics interpretations of the results. Both signals in the 

two categories are scaled and used to quote the overall 

significance of the analysis. Using the Profile-Likelihood 

algorithm of the combined tool, they obtained the signal 

significance of both subcategories by fitting each subcategory 

at a time. 

 

IV. CONCLUSIONS 

We successfully trained a neural network to separate the main 

backgrounds from the VBF signal. We also extracted the 

expected signal significance by conducting a statistical analysis 

of the yields. 

Moreover, the expected significance obtained with a cut-based 

analysis has been 1.4𝜎 and 2.0𝜎 for the VBF and Higgs signal, 

respectively.  

Finally, we performed a more robust statistical analysis with a 

likelihood fit on the shape of the DNN classifier score, 

obtaining a result of 2.2𝜎  and 2.8𝜎  for the VBF and Higgs 

signal, respectively. 
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