
21st LACCEI International Multi-Conference for Engineering, Education, and Technology: “Leadership in Education and Innovation in Engineering in the Framework of Global

Transformations: Integration and Alliances for Integral Development”, Hybrid Event, Buenos Aires - ARGENTINA, July 17 - 21, 2023. 1

New Testing Techniques to Evaluate the Quality of

Information Visualization Implementations
Martín L. Larrea, Ph.D.1,2,3 , Dana K. Urribarri, Ph.D.1,2,3 , and M. Luján Ganuza, Ph.D.1,2,3

1Department of Computer Science and Engineering, Universidad Nacional del Sur, Argentina
2Computer Graphics and Visualization R&D Laboratory, Universidad Nacional del Sur – CIC Prov. De Buenos Aires, Argentina

3Institute for Computer Science and Engineering, Universidad Nacional del Sur, Argentina

{mll, dku, mlg}@cs.uns.edu.ar

Abstract– The use of information visualization has significantly

grown thanks to Industry 4.0, and now we can see its usage in more

critical sectors. In this context, the implementation of such

visualizations must adhere to higher quality standards. To ensure

such quality, we present a set of tools developed from a software

engineering perspective, particularly from the software verification

and validation area. These visualization testing tools go from one to

test interactions from the user point of view to another to test their

code at run time. Since the toolset is free and open-source, we believe

it can be the foundational basis for future developments to expand

its functionality and application domains.

Keywords—Information Visualization, Software Testing,

Black-box Testing, White-box Testing.

I. INTRODUCTION

Information visualizations have found enormous

dissemination in the past years. Whether desktop, web, mobile,

or embedded, few applications do not include any visualization.

In many cases, information visualization has become crucial to

industry functioning, such as those that depend on the analysis

of large data sets. Within Industry 4.0, software quality has

become the most critical factor in determining the success of a

product in a company [1,2,3]. Information visualization, as

software, must ensure the same quality levels as any other

software product [4].

The software quality is constituted in multiple ways, from

the execution times, usability, and the absence of errors. For the

latter, software testing offers many techniques for error

detection [5], which vary according to the type of error sought,

software type, and other variants [6]. Information visualization

requires testing techniques designed to consider its particular

characteristics and, thus, find errors that otherwise would have

been more difficult or impossible to find. Software Verification

and Validation is an area within software engineering. It offers

concepts and techniques that combine to form new testing tools,

especially tools designed to evaluate the quality of information

visualization implementations.

In this work, we present the usage of black-box and white-

box techniques in the context of an information visualization

development in C#. This work is based on Larrea et al. previous

publications; we have adapted the Java tool to test C#

implementations, and present the usage of those tools to

perform different tests on a C# visualization. The black-box

testing is based on user interactions, while the white-box is

based on methods call sequences. This work includes the

implementation of all necessary tools to perform these

techniques.

The rest of the article is structured as follows. The next

section reviews the state-of-the-art in terms of visualization

testing. In the subsequent sections, we continue with the

presentation of the black-box and white-box testing tools for

information visualization. We develop a case study to illustrate

both kinds of testing. The case study is based on a C# tool

designed for the visualization of geological data, and it

exemplifies the process of finding errors with the tools and

methods described in this work. The last section presents the

reached conclusions and the intended future work.

II. INFORMATION VISUALIZATION TESTING

When studying the testing area in the context of

information visualizations, a peculiarity that emerges is the

number of visualization articles where the terms “testing”,

“verification”, and “validation” are all used as synonyms for

usability evaluations. Usability testing of visualization is a well-

studied area within visualization science; it focuses on how

user-intuitive the visualization is. However, various works

[7,8,9] emphasize the need to assess, besides intuitiveness,

whether a visualization is useful for its intended purposes, i.e.

evaluate its functionality. Another term that appears when

exploring this area is GUI (Graphical User Interface) testing.

Banerjee et al. [10] define the term GUI testing to mean that a

GUI-based application, i.e., one that has a GUI front-end, is

tested solely by performing sequences of events (e.g., “click on

button”, “enter text”, “open menu”) on GUI widgets (e.g.,

“button”, “text-field”, “pull-down menu”). Banerjee et al. also

provide a study of the existing body of knowledge on GUI

testing since 1991 and, as Memon and Nguyen [11], present a

classification based on model-based GUI test techniques [12].

Hellman et al. [13] present a review of test-driven development

of GUI. They state that GUI testing is very complex due

partially to the degree of freedom GUIs allow users.

Those techniques which do not involve graphic

components use decision tables [14] or other forms of tabular

representation to test the software. Some of them are informal

techniques that are very difficult to methodize and rely heavily

on the tester's goodwill. Others allow systematizing the testing

by using a formal specification which is very complicated to

achieve for information visualization [15].

When considering these three types of testing mentioned,

usability, GUI, and visualizations, we must highlight why one

ISBN: 978-628-95207-4-3. ISSN: 2414-6390. Digital Object Identifier: 10.18687/LACCEI2023.1.1.1016

https://orcid.org/0000-0003-3067-464X
https://orcid.org/0000-0001-5446-7077
https://orcid.org/0000-0003-4576-2124

21st LACCEI International Multi-Conference for Engineering, Education, and Technology: “Leadership in Education and Innovation in Engineering in the Framework of Global

Transformations: Integration and Alliances for Integral Development”, Hybrid Event, Buenos Aires - ARGENTINA, July 17 - 21, 2023. 2

cannot supplant the others. First, we must separate the usability

tests from the other two. Usability testing does not test the

correctness of the program [16] but whether the user can work

correctly and conveniently with it. GUI and visualization

testing focuses on the functionality and correctness of the

system but not its usability. Regarding GUI and visualization

testing, as indicated by Banerjee et. al [10], GUI Testing deals

with exercising the GUI’s widgets. This conception makes

sense because a GUI is described in terms of widgets, such as

buttons, text fields, and drop-down lists, among others. But a

visualization, particularly information visualization [17], is

described in terms of the abstract data it represents. Information

visualization is a more abstract visual representation than GUIs

and therefore requires a different approach.

In addition, some works deal with functional testing of

information visualizations. Kazmi et al. [18] present what they

call a meta-model for automated black-box testing of

visualizations. The proposed meta-model works as the

architecture of an automated testing system for visualizations;

however, the authors do not present an implementation of a

software for this purpose, and it is not possible to validate the

model without at least one implementation. Because the

proposal is a meta-model, the article does not delve into

specifics of the software verification and validation areas, such

as testing techniques or coverage criteria. Anbo et al. [19] focus

on the research of automated testing methods for the quality of

cartographic visualization to test the visualization quality of

vector maps. In this context, the authors refer to quality as the

union of factors that compose the quality of cartography.

Although it is a broader vision than the one chosen for this

work, the authors test the visualizations considering them as

black boxes. Unlike Kazmi et al.'s work, the latter presents a

case study on a particular map; however, the publication does

not contain the set of rules used for the testing or how they were

processed. Nor can it be understood from this test case how

users' interactions affect the testing process. Kirby and Silva [4]

highlight the need to introduce verification and validation

processes for visualization development and the lack of

research in this field within the visualization area. Larrea [20]

also validates this statement.

Mendoça et al. [2] present a data generator application for

testing visualization techniques. Their system allows users to

define and compose known statistical distributions to produce

the desired outcome, visualizing the behavior of the data in real-

time to analyze if it has the characteristics needed for testing.

They claim that testing a visualization technique with real data

is very difficult; therefore, they proposed to generate these data

under control conditions. They introduced a synthetic dataset

generator, which the tester can use to create data sets. The tester

controls the data set's characteristics such as patterns, trends,

type, format, outliers, dimensions, or missing values. Although

this is not a functional or usability testing technique, generating

data is a fundamental step for any type of testing. Etiene's work

[22,23] on verifiable visualization checks the mathematical

calculations involved in the visualization process. He stated that

scientific volume rendering is not under the same rigorous

scrutiny as other elements like mathematical modeling and

numerical simulation. These works are more related to a white-

box testing technique approach.

Motivated by the need to ensure the quality of

visualizations, Larrea [20] proposed a new black-box testing

technique based on user interactions at a conceptual level.

Subsequent works present the creation and evolution of a white-

box testing tool for Java source code [41,35,24,36] and a black-

box testing tool evaluated on web-visualization test cases [40].

All these proposals build on Message Sequence Specification

(MSS) [25] and coverage criteria based on method sequencing

constraints [26] and share some similarities with User Action

Notation [27].

III. BLACK-BOX TESTING BASED ON USER INTERACTIONS

A visualization system can be viewed as a two-part system

[28], representation and interaction. The representation

component is concerned with the mapping from data to visual

elements and how that visual elements are rendered. The

interaction component involves the dialog between the user and

the system since the user expresses orders to the visualization

through interactions. Interactions function as a language and, as

such, may have restrictions or rules on their usage for the

visualization to work properly.

A. Sequence Constraint on the Interactions

We can distinguish between high and low levels of

interactions in visualization. The user objectives and the

motivations behind the visualization are described in high-level

interactions. The visualization's low-level interactions [29] help

the user accomplish their objective, which is a high-level

interaction. While high-level interactions [30,3] are more

abstract, low-level interactions are present at the visualization's

implementation level.

Larrea [20] introduced the concept of Sequence Constraint

on Low-Level Interactions (SCI). Each SCI involves a set of

binary or unary operators and a set of symbols. Each symbol

represents an interaction actually available in the visualization.

The SCI is a regular expression formed by those symbols and

indicates the correct visualization usage.

Sequence relationships between two interactions are

classified into three categories: sequential, optional, and

repetition. Let 𝑉𝑖 be the interaction 𝑖 of the visualization 𝑉 .

Then,

 the sequential relationship 𝑉𝑖1 • 𝑉𝑖2 states that the

interaction 𝑉𝑖1must be done before 𝑉𝑖2,

 the optional relationship 𝑉𝑖1|𝑉𝑖2 states that only one of the

interactions 𝑉𝑖1 and 𝑉𝑖2 can be performed,

 the repetition relationship (𝑉𝑖1)∗ states that the interaction

𝑉𝑖1 can be done many times in a row, including zero times.

The + operator restricts the repetitions relationship

(𝑉𝑖1)+to at least one time.

21st LACCEI International Multi-Conference for Engineering, Education, and Technology: “Leadership in Education and Innovation in Engineering in the Framework of Global

Transformations: Integration and Alliances for Integral Development”, Hybrid Event, Buenos Aires - ARGENTINA, July 17 - 21, 2023. 3

From the SCI, it can be inferred sequences of interactions

that serve as test cases for the visualization. Within the

presented work, we consider two types of test cases: valid test

cases, i.e., sequences of interaction derivable from the SCI, and

invalid test cases, i.e., interaction sequences not derivable from

the SCI.

Let us take, for example, the visualization “Daily

confirmed COVID-19 deaths, rolling 7-day average” [32] (Fig.

1) from Nov 1, 2021, found in “Our World in Data”. Here, the

user finds a visualization of a world map where each country is

colored according to a color scale that is presented as part of the

visualization.

Fig. 1 Visualization about daily confirmed COVID-19 deaths, rolling 7-day

average, from Nov 1, 2021. Available at [32]

The color scale shows the number of deaths caused by

Covid-19. From the point of view of interactions, the user can

 Place the mouse over any point in the color scale.

Consequently, the visualization highlights those countries

whose color corresponds to the one located below the

mouse. We call this interaction HoverOverColorScale.

 Hover the mouse over any country to make it stand out.

The color is also highlighted on the scale. An information

message also appears, inviting the user to click to access

more information. We call this interaction

HoverOverCountry.

 Click on any country, which changes the display to a line

graph. We call this interaction ClickOnCountry.

 Once on the line chart, hover over any position on the line

for additional information. We call this interaction

HoverOverLine.

 Finally, return to the map visualization by clicking where

it says Map. We call this interaction ReturnToMap.

 In both the map and the line graph visualizations, adjust a

time slider to change the date to visualize. We call this

interaction AdjustTime-Slider.

 There are other possible interactions in this visualization,

but, to explain the technique, we have limited ourselves to those

presented so far. The aforementioned interactions are available

to the user but cannot be used in any order. There are

restrictions on when to use each one. These restrictions can be

described as follows: Once the web page loads, the user is

presented with the map visualization. At this point, the user can

hover the mouse over any country or the color scale or adjust

the time slider. The user can click on any country, implying a

previous hover over it. The line graph for a country is only

accessible by clicking on that country. Once the line graph is

enabled, it is possible to place the cursor on it or return to the

map display. The time-slider adjustment is possible at any

moment and on either of the two mentioned visualizations.

 In this functional description of the behavior of the

visualization, restrictions between the interactions are evident

and translatable into an SCI, as previously defined. In this

sense, the SCI corresponding to this visualization would be:

(𝐻𝑜𝑣𝑒𝑟𝑂𝑣𝑒𝑟𝐶𝑜𝑙𝑜𝑟𝑆𝑐𝑎𝑙𝑒 | 𝐻𝑜𝑣𝑒𝑟𝑂𝑣𝑒𝑟𝐶𝑜𝑢𝑛𝑡𝑟𝑦

| 𝐴𝑑𝑗𝑢𝑠𝑡𝑇𝑖𝑚𝑒𝑆𝑙𝑖𝑑𝑒𝑟 | 𝐻𝑜𝑣𝑒𝑟𝑂𝑣𝑒𝑟𝐶𝑜𝑢𝑛𝑡𝑟𝑦 • 𝐶𝑙𝑖𝑐𝑘𝑂𝑛𝐶𝑜𝑢𝑛𝑡𝑟 •
(𝐻𝑜𝑣𝑒𝑟𝑂𝑣𝑒𝑟𝐿𝑖𝑛𝑒 |𝐴𝑑𝑗𝑢𝑠𝑡𝑇𝑖𝑚𝑒𝑆𝑙𝑖𝑑𝑒𝑟)∗ • 𝑅𝑒𝑡𝑢𝑟𝑛𝑇𝑜𝑀𝑎𝑝)∗

 (1)

As mentioned before, this SCI can be used to generate valid

interaction sequences and infer invalid ones, which then will be

used to test the behavior of the visualization. However, and in

line with the principles of software testing, this testing process

must be orderly, and it must be possible to establish different

criteria for test intensity. Every testing technique includes these

criteria, known as coverage criteria [33], and our work is not

the exception.

B. Coverage Criteria

Let 𝐼 be the set of interactions available on the

visualization 𝑉, and 𝐺, the SCI for 𝑉 using the elements of 𝐼.

Consider 𝑇 to be the set of test cases where each case is a

sequence of interactions in 𝐼. With these elements, we can now

introduce the Coverage Criteria for Sequencing Constraints

with Low-Level Interactions. These criteria are divided into two

categories [26]: coverage criteria for valid sequences and

coverage criteria for invalid ones.

B.I Coverage Criteria for Valid Sequences

 Base Coverage: Let 𝑖 be the minimum length of valid

sequences derived from 𝐺, then 𝑇 satisfies the Base Coverage

Criteria if and only if 𝑇 contains all the possible 𝑖 -length

sequences derivable from 𝐺. If 𝑖 equals 0, then 𝑇 is the empty

set and satisfies the Base Coverage Criteria.

Base+1 Coverage: Let 𝑖be the minimum length of valid

sequences derived from 𝐺 , then 𝑇 satisfies the Base+1

Coverage Criteria if and only if 𝑇 contains all the possible 𝑖 +
1-length sequences derivable from 𝐺.

Base+n Coverage: This is a generalization of the previous

coverage criteria.

Let 𝑖 be the minimum length of valid sequences derived

from 𝐺, then 𝑇 satisfies the Base+n Coverage Criteria if and

21st LACCEI International Multi-Conference for Engineering, Education, and Technology: “Leadership in Education and Innovation in Engineering in the Framework of Global

Transformations: Integration and Alliances for Integral Development”, Hybrid Event, Buenos Aires - ARGENTINA, July 17 - 21, 2023. 4

only if 𝑇 contains all the possible (𝑖 + 𝑛)-length sequences

derivable from 𝐺, where 𝑛 ≥ 2. It is important to note that 𝐺

may impose limits on how large n can be.

B.II Coverage Criteria for Invalid Sequences

 Invalid Coverage: 𝑇 satisfies the Invalid Coverage Criteria

if and only if 𝑇 contains all the possible 1-length sequences that

are not derivable from 𝐺.

 Invalid-2 Coverage: 𝑇 satisfies the Invalid-2 Coverage

Criteria if and only if 𝑇 contains all the possible non-derivable

from 𝐺 sequences obtained by combining two interactions of 𝐼.
 Invalid-n Coverage: 𝑇 satisfies the Invalid-n Coverage

Criteria if and only if 𝑇 contains all the possible non-derivable

from 𝐺 sequences obtained by combining n interactions of 𝐼,

where 𝑛 ≥ 2.

B.III Sequence Generation for COVID-19 Visualization

 From the Equation 1 and the defined coverage criteria for

our technique, we can generate test sequences for the

visualization of COVID-19 deaths. Starting with the valid

sequences, the Base Coverage Criteria for the SCI in equation

1 is 0. Hence, the empty set satisfies the Base Coverage Criteria.

For the Base+1 Coverage, we must consider valid sequences of

length 1, because the base value is 0. The set 𝑇𝑣𝑎𝑙𝑖𝑑+1 from

Equation 2 satisfies the Base+1 Coverage Criteria because it

contains all the valid sequences of length 1. Analogously, the

set 𝑇𝑣𝑎𝑙𝑖𝑑+2 from Equation 2 meets the Base+2 Coverage

Criteria since it has all the valid sequences of length 2.

𝑇𝑣𝑎𝑙𝑖𝑑+1 = {𝐻𝑜𝑣𝑒𝑟𝑂𝑣𝑒𝑟𝑆𝑐𝑎𝑙𝑒, 𝐻𝑜𝑣𝑒𝑟𝑂𝑣𝑒𝑟𝐶𝑜𝑢𝑛𝑡𝑟𝑦,

𝐴𝑑𝑗𝑢𝑠𝑡𝑇𝑖𝑚𝑒𝑆𝑙𝑖𝑑𝑒𝑟}
(2)

𝑇𝑣𝑎𝑙𝑖𝑑+2 = {𝐻𝑜𝑣𝑒𝑟𝑂𝑣𝑒𝑟𝐶𝑜𝑙𝑜𝑟𝑆𝑐𝑎𝑙𝑒

• 𝐻𝑜𝑣𝑒𝑟𝑂𝑣𝑒𝑟𝐶𝑜𝑙𝑜𝑟𝑆𝑐𝑎𝑙𝑒,
𝐻𝑜𝑣𝑒𝑟𝑂𝑣𝑒𝑟𝐶𝑜𝑢𝑛𝑡𝑟𝑦 • 𝐻𝑜𝑣𝑒𝑟𝑂𝑣𝑒𝑟𝐶𝑜𝑢𝑛𝑡𝑟𝑦,

𝐴𝑑𝑗𝑢𝑠𝑡𝑇𝑖𝑚𝑒𝑆𝑙𝑖𝑑𝑒𝑟 • 𝐴𝑑𝑗𝑢𝑠𝑡𝑇𝑖𝑚𝑒𝑆𝑙𝑖𝑑𝑒𝑟,
𝐻𝑜𝑣𝑒𝑟𝑂𝑣𝑒𝑟𝐶𝑜𝑙𝑜𝑟𝑆𝑐𝑎𝑙𝑒 • 𝐻𝑜𝑣𝑒𝑟𝑂𝑣𝑒𝑟𝐶𝑜𝑢𝑛𝑡𝑟𝑦,
𝐻𝑜𝑣𝑒𝑟𝑂𝑣𝑒𝑟𝐶𝑜𝑙𝑜𝑟𝑆𝑐𝑎𝑙𝑒 • 𝐴𝑑𝑗𝑢𝑠𝑡𝑇𝑖𝑚𝑒𝑆𝑙𝑖𝑑𝑒𝑟,

𝐻𝑜𝑣𝑒𝑟𝑂𝑣𝑒𝑟𝐶𝑜𝑢𝑛𝑡𝑟𝑦 • 𝐻𝑜𝑣𝑒𝑟𝑂𝑣𝑒𝑟𝐶𝑜𝑙𝑜𝑟𝑆𝑐𝑎𝑙𝑒,
𝐻𝑜𝑣𝑒𝑟𝑂𝑣𝑒𝑟𝐶𝑜𝑢𝑛𝑡𝑟𝑦 • 𝐴𝑑𝑗𝑢𝑠𝑡𝑇𝑖𝑚𝑒𝑆𝑙𝑖𝑑𝑒𝑟,

𝐴𝑑𝑗𝑢𝑠𝑡𝑇𝑖𝑚𝑒𝑆𝑙𝑖𝑑𝑒𝑟 • 𝐻𝑜𝑣𝑒𝑟𝑂𝑣𝑒𝑟𝐶𝑜𝑙𝑜𝑟𝑆𝑐𝑎𝑙𝑒,
𝐴𝑑𝑗𝑢𝑠𝑡𝑇𝑖𝑚𝑒𝑆𝑙𝑖𝑑𝑒𝑟 • 𝐻𝑜𝑣𝑒𝑟𝑂𝑉𝑒𝑟𝐶𝑜𝑢𝑛𝑡𝑟𝑦}

(3)

Each element of the sets 𝑇𝑣𝑎𝑙𝑖𝑑+1and 𝑇𝑣𝑎𝑙𝑖𝑑+2 represents a

test case. For every test case, a tester or the visualization

developer himself must carry out the sequence of interactions

and validate whether the behavior observed in the visualization

corresponds to the expected one. Otherwise, a bug was

detected.

A similar exercise could be done for invalid sequences

following the coverage criteria. It worth noting that, in this case,

if an invalid sequence can be executed in the visualization then

that is the proof that there is a bug in the system. Certainly, this

example allows the reader to observe that the generation of test

cases is not trivial and, according to the SCI, the number of test

cases can rapidly grow even for small values of coverage

criteria. For this reason, this technique would benefit from tools

that automate the test-case generation.

C. Test Cases Generation

A tool was developed (Fig. 2) that automates the generation

of test cases to facilitate this process. From the SCI and the

coverage criteria, the system automatically generates the list of

test cases in a friendly format for the testing process.

This tool offers an editor that allows the user to enter the

SCI, the coverage parameters, and an optional mapping

between symbols and interaction names. To simplify the

writing of the SCI, the tool allows the user to use single

characters as interactions. The user can then map these

characters to meaningful interaction names to make the test

cases easier to read.

Once the information is entered and validated, the tool

generates a report containing the test cases. The report design

allows recording the success or failure of each test case and

attaching notes of the execution. In addition, it can be used on

the web or as a printed document.

Fig. 2 shows a screenshot of the tool in its initial state. As

seen in the figure, it is composed by three mandatory input

fields in which the user enters the regular expression and the

two values used as parameters for the coverage criteria. These

last two are initialized by default with the values 0 and 1 since

they are the minimum values allowed by definition. In turn, the

input fields do not allow entering smaller values. Once a valid

SCI expression has been entered, new fields are dynamically

generated for the user to optionally enter the full name of the

interaction, as shown in Fig. 3. Symbol mapping is optional at

the individual level. It allows adding a more descriptive name

only for those symbols the user considers worthwhile.

When viewing the report, the names in the mapping are

used to display a detailed version of the SCI expression and list

the interaction names in each test case. In case an error is

detected in the entered values, a descriptive message is

displayed. Once the required values are entered, the user is

enabled to generate the report, and the newly generated one

shows up in a browser new tab. Since the report was designed

and implemented with simplicity in mind, the same format

presented in the application could be exported as PDF using the

standard printing functionality directly. The blue PDF icon is

the button that allows users to export the document as a PDF

file (Fig. 4).

A heading at the top of the report shows the values

previously entered in the editor and used to generate the test-

cases list. The cases in the list are grouped according to whether

they are a valid or invalid sequence of interactions. For each test

case, there is a box with a title showing the sequence of

interactions from the SCI expression that resulted in that test

case. As mentioned above, names are used in those cases where

a mapping was provided.

The report allows users to check whether the test case was

successfully executed or failed at some point. After a test-case

execution, the user can select the result in the upper right corner

21st LACCEI International Multi-Conference for Engineering, Education, and Technology: “Leadership in Education and Innovation in Engineering in the Framework of Global

Transformations: Integration and Alliances for Integral Development”, Hybrid Event, Buenos Aires - ARGENTINA, July 17 - 21, 2023. 5

and write comments if necessary. Note that a valid test case is

successful if the sequence executes correctly; however, an

invalid test case is successful if the sequence fails to execute.

IV. WHITE-BOX TESTING BASED ON MSS

The development of this visualization-testing technique led

to the development of a second testing tool but oriented to

white-box testing. This new development has similarities with

another developed in the 90s [26, 34], in the sense that it works

on restrictions to the order of calls to methods of a class instead

of interactions of a visualization. This new tool, called TAPIR,

became a testing framework for Java [35], and, in this work, we

adapted it for C#.

TAPIR [41,35,24,36, 43] is a white-box testing framework

for object-oriented source code based on Message Sequence

Specification (MSS) [34]. An MSS is the equivalent of an SCI

but for a class in an object-oriented program. It describes the

correct order in which the methods of a class should be invoked

by its clients.

Fig. 2 Home screen of the Test Suite Editor, a tool to automatically generate

test cases. Available at [42].

Fig. 3 Once a valid SCI expression has been entered, new fields are
dynamically generated for the user to optionally enter the interaction full-

name to make the test cases easier to read.

Fig. 4 A heading at the top of the report shows the values previously entered

in the editor and used to generate the test-cases list. The blue PDF icon is the
button that allows users to export the document as a PDF file.

Each class can have an associated MSS which specifies all

sequences of messages that the class's instances can receive

while still providing correct behavior. Sequence relationships

between two methods are classified into three categories, like

before: sequential, optional, and repetition.

A. Runtime Verification

TAPIR allows the programmer to verify, at runtime, that

the sequence of method calls of an object respects the MSS

defined for the class of which the object is an instance. The

framework now allows the incorporation of these controls into

any Java or C# code without having to modify it. This is

achieved thanks to the fact that the TAPIR core is implemented

using Aspect-Oriented Programming. The framework consists

of two main components: an aspect and two classes. The aspect

is named TestingCore and contains the implementation of the

framework's core. The two classes are TestingInformation and

TestingSetup.

Class TestingInformation encapsulates all the information

necessary to test a particular class, namely:

 a map between class instances and the actual invocation

sequences for each one,

 the regular expression that describes the MSS of the class,

 a map between the name of the class's methods and the

symbols used in the regular expression,

 whether the execution of the program should abort after an

error in the invocation sequence of this class.

 The TestingSetup class is responsible for initializing the

framework with the data about the classes to test. This

initialization is responsibility of the developer and must be

implemented in a setup method. The TestingCore aspect, before

the execution of the main method, initializes the framework

executing method setup from class TestingSetup. Then, the

aspect captures each method call that occurs outside the

framework scope and checks whether it corresponds to a class

under testing. In that case, the framework tests whether the

method was invoked following the regular expression in its

class specification. The TAPIR framework was implemented in

21st LACCEI International Multi-Conference for Engineering, Education, and Technology: “Leadership in Education and Innovation in Engineering in the Framework of Global

Transformations: Integration and Alliances for Integral Development”, Hybrid Event, Buenos Aires - ARGENTINA, July 17 - 21, 2023. 6

Java using the AspectJ extension [37]. We are now introducing

its version for C# which was implemented with PostSharp [38].

 Take for example a class that implements a checking

account, as shown in Listing 1. Let us then consider the

following conditions for the correct use of this class; first, the

account must be created, and then it must be verified. Next, the

first movement of money must be a deposit so that afterward

the user can deposit or withdraw money as many times as she/he

wants. Once the account is closed, no further operations are

allowed. Based on this specification we can establish the

following MSS for the CheckAccount class:

𝑐𝑟𝑒𝑎𝑡𝑒 • 𝑣𝑒𝑟𝑖𝑓𝑦 • 𝑑𝑒𝑝𝑜𝑠𝑖𝑡 • (𝑑𝑒𝑝𝑜𝑠𝑖𝑡 | 𝑤𝑖𝑡ℎ𝑑𝑟𝑎𝑤)∗

• 𝑐𝑙𝑜𝑠𝑒
(4)

Listing 1 A simple class to demonstrate how the TAPIR framework works in

C#.

class CheckAccount {
 private int amount;
 private Boolean verified;

 public CheckAccount() {
 amount = 0;
 verified = false ; }

public void Verify() {
 verified = true; }

public Boolean IsVerified() {
 return verified ; }

public void Deposit(int amount) {
 if (IsVerified ()) {
 amount += amount; } }

public void Withdraw(int amount) {
 if (IsVerified ()) {
 amount −= amount; } }

public void Close() {
 amount = 0;

 verified = false ; } }

The first thing the developer must do to use the framework

is to identify and write the MSS associated with the classes

under test. To simplify its writing, symbols (i. e., characters) are

used instead of the actual names of the methods. However, to

be able to interpret it, the developer must specify a mapping

between the actual methods' names and their corresponding

symbol. TAPIR ignores any method not included in the class's

MSS. Hence, the developer is not required to use all the class

methods in the MSS. Implicitly, leaving a method out of the

SCI indicates that that method can be invoked at any time (for

example, the IsVerified() method of class CheckAccount.

The developer must also specify how the framework

should behave in the event of an error. When TAPIR detects a

sequence of calls that do not derive from its associated MSS, it

reports the error and can either abort the execution or allow it

to continue. This decision is in the hands of the developer, and

it can be specified independently for each defined MSS. The

regular expressions and the maps between methods and

symbols are set in the TestingSetup class. Listing 2 shows this

for the CheckAccount class.

 Listing 4 shows the framework output of the execution of

the code portion of Listing 3, which corresponds to a misuse of

the CheckAccount class. In this case, the call to Verify() does

not follow the MSS specified for the CheckAccount class. When

an error is detected, TAPIR reports to the console the object that

caused the error, the class of which it is an instance, the method

that violated the MSS, the MSS in question, and the actual

sequence of calls. Finally, the system aborts the execution as

indicated in the configuration by the last parameter at the

constructor invocation of the TestingInformation (see Listing

2). Each TestingInformation instance corresponds to the MSS

and the symbol mapping for one class. Then, adding more

instances to the TestingCore class allows the testing of multiple

instances of multiple classes.

 A major feature of our framework is to be easy to use,

with an easy to read and understand representation of the correct

usage of the class' methods. In particular, the user of the

framework does not need to be a testing specialist since it was

developed to be used directly by the developer.

B. Test Cases Generation

Larrea & Urribarri [36, 44] presented Generotron (Fig. 5), a

complement to TAPIR for the generation of test cases and the

methodical testing of the behavior of a class against valid and

invalid combinations of method invocations. This complement

generates valuable documentation for developers when unit

testing classes. Even though TAPIR evaluates the correct usage

of a set of classes at run-time, unit testing is still necessary when

testing software components that are not yet part of a complete

application. Since programming knowledge is not required to

use this application and its output is language-independent, any

work-team member can generate such test cases. This

application is equivalent to the one developed for information

visualization but with class terminology. Both offer the same

functionalities for writing regular expressions (SCI and MSS)

and generating reports.

V. SPINELVIZ – A VISUALIZATION APPLICATION FOR

MINING AND GEOLOGICAL INDUSTRIES

In this section, we show how the presented toolset can be

used to detect possible errors in an interactive 3D application

for visualizing spinel-group minerals data called SpinelViz

[39]. The spinel-group minerals constitute excellent

petrogenetic indicators and guide the search for mineral

deposits of economic interest. The application consists of an

interactive 3D viewer, which allows the user to view and

explore different datasets simultaneously in the same spinel

prism. Geologists usually represent the composition of the

spinel-group minerals in a prismatic space called spinel prism.

SpinelViz provides the capability to manipulate, view, plot, and

project data in 2D and 3D, which helps the user to gain a better

insight into the data distribution.

21st LACCEI International Multi-Conference for Engineering, Education, and Technology: “Leadership in Education and Innovation in Engineering in the Framework of Global

Transformations: Integration and Alliances for Integral Development”, Hybrid Event, Buenos Aires - ARGENTINA, July 17 - 21, 2023. 7

Listing 2 TAPIR configuration for verifying the invocation order of the methods of the CheckAccount class at runtime.

class TestingSetup {
 public static void Setup() {
 //Specification of the test class
 TestingCore.MapClassToTestingInformation = new Dictionary<string, TestingInformation>();
 //Testing setup for CheckAccount class
 //Definition of the methods and their corresponding symbols
 mapObjectsToCallSequence = new Dictionary<int, string>();
 mapMethodsToSymbols = new Dictionary<string, string>();
 mapMethodsToSymbols.Add("ConsoleApp1.main.CheckAccount..ctor", "c");
 mapMethodsToSymbols.Add("ConsoleApp1.main.CheckAccount.Verify", "v");
 mapMethodsToSymbols.Add("ConsoleApp1.main.CheckAccount.Deposit", "d");
 mapMethodsToSymbols.Add("ConsoleApp1.main.CheckAccount.Withdraw", "w");
 mapMethodsToSymbols.Add("ConsoleApp1.main.CheckAccount.Close", "x");
 //Definition of the regular expression
 potentialRegularExpression = @"^c(v(d((d|w)*x?)?)?)?$";
 finalRegularExpression = @"^cvd(d|w)*x$";
 //A TestingInformation instance stores all the information related to how is tested the CheckAccount class
 className = typeof(CheckAccount).FullName;
 testingInformation = new TestingInformation(className, mapObjectsToCallSequence, mapMethodsToSymbols, potentialRegularExpression,
finalRegularExpression, true);
 TestingCore.MapClassToTestingInformation.Add(className, testingInformation);
 }
}

A. Black-box Testing based on User-Interactions Tool

 A common task in the spinel-mineral analysis is to analyze

a particular sample (data item) in the context of the dataset to

which it belongs. For this reason, SpinelViz supports on-

demand selection and highlighting of particular samples. After

loading a dataset, the SpinelViz represents all the data items

corresponding to that dataset with the same color, shape, and

size. Then, the user can select a data item of interest and modify

its representation to differentiate it from the rest.

This modification can be undone, restoring the data item to

its original visual appearance. A list in the interface registers all

the currently modified items. Undoing a modification must

remove the item from the list.

Listing 3 Example of a misuse of the methods of class CheckAccount.

var account9 = new CheckAccount();
account9.Verify();
account9.Deposit(1000);
account9.Deposit(4000);
account9.Withdraw(3000);
account9.Verify();
account9.Close();

Listing 4 Error example for the CheckAccount class. The execution is aborted

when the error is found

--- ERROR FOUND ---
Class: class main.CheckAccount
Object Code: 1421795058
Method Executed: main.CheckAccount.Verify
Regular Expression: cvd(d|w)*x
Execution Sequence: cvddwv
----- SYSTEM ABORTING... -----

For this matter, the application supports the following

interactions:

 Load a dataset into the spinel prism. All the data items of

the loaded dataset are represented in the spinel prism with

the same color, shape, and size. We call this interaction

Load.

 Select a data item. We call this interaction Select.

 Modify the visual representation of a selected sample. The

user can change the color, size, and shape used to represent

the data item in order to highlight it. We call this interaction

Modify.

 Undo the modifications performed over a sample. The user

can undo the changes on a selected sample and restore it to

its original visual appearance. We call this interaction

Undo.

 The SCI of Equation 5 describes the behavior of this

visualization. Once the SpinelViz loads, the user is presented

with an empty spinel prism. To start the analysis session he/she

must Load a dataset. After loading the dataset, the user can

Select a data item and Modify its representation. Then the user

can Select any data item and Modify it or Undo the modification

if the selected item was previously modified. The list of

currently modified items should change accordingly.

𝐿𝑜𝑎𝑑 | (𝐿𝑜𝑎𝑑 • 𝑆𝑒𝑙𝑒𝑐𝑡 • 𝑀𝑜𝑑𝑖𝑓𝑦 • (𝑆𝑒𝑙𝑒𝑐𝑡 • (𝑀𝑜𝑑𝑖𝑓𝑦|𝑈𝑛𝑑𝑜))∗)

(5)

Since it is mandatory to load a dataset to start the analysis

session, the minimum sequence of interactions valid for this

visualization is 1. The test set 𝑇𝑉𝑎𝑙𝑖𝑑+0that satisfies the Base

Coverage criteria contains only one sequence of one interaction

(see Equation 6).

𝑇𝑉𝑎𝑙𝑖𝑑+0 = {𝐿𝑜𝑎𝑑} (6)

From that SCI, it is impossible to derive valid sequences of

length 2 or 4, then the test sets 𝑇𝑉𝑎𝑙𝑖𝑑+1 and 𝑇𝑉𝑎𝑙𝑖𝑑+3 that satisfy

21st LACCEI International Multi-Conference for Engineering, Education, and Technology: “Leadership in Education and Innovation in Engineering in the Framework of Global

Transformations: Integration and Alliances for Integral Development”, Hybrid Event, Buenos Aires - ARGENTINA, July 17 - 21, 2023. 8

the Base+1 and Base+3 coverage criteria are empty. With the

provided tool, we easily generated the test sets that satisfy the

Base+2 and Base+4 Coverage criteria (see Equations 7 and 8).

𝑇𝑉𝑎𝑙𝑖𝑑+2 = {𝐿𝑜𝑎𝑑 • 𝑆𝑒𝑙𝑒𝑐𝑡 • 𝑀𝑜𝑑𝑖𝑓𝑦} (7)

𝑇𝑉𝑎𝑙𝑖𝑑+4 = {𝐿𝑜𝑎𝑑 • 𝑆𝑒𝑙𝑒𝑐𝑡 • 𝑀𝑜𝑑𝑖𝑓𝑦 • 𝑆𝑒𝑙𝑒𝑐𝑡 • 𝑀𝑜𝑑𝑖𝑓𝑦,

𝐿𝑜𝑎𝑑 • 𝑆𝑒𝑙𝑒𝑐𝑡 • 𝑀𝑜𝑑𝑖𝑓𝑦 • 𝑆𝑒𝑙𝑒𝑐𝑡 • 𝑈𝑛𝑑𝑜}
(8)

The report provided by the tool was very useful to guide

the testing of the SpinelViz (see Fig. 6). While writing the SCI,

L stands for Load, S for Select, M for Modify, and U for Undo.

Fortunately, no errors were found when executing the

interaction sequences from 𝑇𝑉𝑎𝑙𝑖𝑑+0 and 𝑇𝑉𝑎𝑙𝑖𝑑+2.

Fig. 5 Homescreen of Generotron, our application for automatic test cases

generation based on MSS.

Fig. 6 Report of test cases with coverage criteria Base+0, Base+2 and Base+4

for valid sequences.

Fig. 7 Modify and Undo interactions in SpinelViz. On the left, the result of

modifying the visual appearance of a data item is shown. On the right, when the
user undoes the modification, the visual appearance is restored, but the list of

modified items is not correctly updated.

However, the SpinelViz did not work properly for all test

cases belonging to 𝑇𝑉𝑎𝑙𝑖𝑑+4. Unexpectedly, when trying to run

the valid sequence {𝐿𝑜𝑎𝑑 • 𝑆𝑒𝑙𝑒𝑐𝑡 • 𝑀𝑜𝑑𝑖𝑓𝑦 • 𝑆𝑒𝑙𝑒𝑐𝑡 •

𝑈𝑛𝑑𝑜} we realized that the Undo operation did not work

properly. Although the visual appearance of the selected data

item was restored correctly, the list of currently modified

elements was not correctly updated in the interface (Fig. 7).

B. White-box Testing based on MSS using TAPIR

In this section, we try to determine if the error detected in

Section V.A is the result of a failure in the sequence of calls

made by objects. SpinelViz was developed in C#. It has 51540

lines of code distributed in 29 classes. The class strictly related

to the error found in the previous section is ModifiedItems, a

class that encapsulates a data structure responsible for

maintaining a record of the currently modified data items. The

primary methods to test in this class are the constructor,

addModifiedItem, and removeModifiedItem. Equation 9 shows

its corresponding MSS.

𝑐𝑟𝑒𝑎𝑡𝑒 • 𝑎𝑑𝑑𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑𝐼𝑡𝑒𝑚

• (𝑎𝑑𝑑𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑𝐼𝑡𝑒𝑚 |𝑟𝑒𝑚𝑜𝑣𝑒𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑𝐼𝑡𝑒𝑚)∗
(9)

We configured TAPIR with the mentioned MSS and

worked with the SpinelViz during a long analysis session.

Since the error detected in Section V.A had not yet been fixed,

the list of modified elements was not updated correctly when

the user tried to undo a modification; however, the analysis

session finished, and TAPIR did not detect any failure in the

sequence of calls.

At this point, we knew that something was wrong with the

ModifiedItems class, and as TAPIR supports working with

private and protected methods, we decided to continue testing

the class at a lower level. The ModifiedItems class encapsulates

a data structure that stores the modified data items, and for

matters of efficiency, it maintains an index to the last element

in the structure.

Then, the addModifiedItem method is the result of calling

two protected methods, addItem (in charge of inserting the new

item at the end of the structure) and updateIndex (in charge of

updating the index accordingly). In the same way, the

removeModifiedItem method is the result of calling two

protected methods, removeItem (in charge of deleting the

corresponding item from the structure) and updateIndex (in

charge of updating the index accordingly). Therefore, Equation

10 shows the new MSS for the class at the protected methods

level.

𝑐𝑟𝑒𝑎𝑡𝑒 • 𝑎𝑑𝑑𝐼𝑡𝑒𝑚 • 𝑢𝑝𝑑𝑎𝑡𝑒𝐼𝑛𝑑𝑒𝑥

• ((𝑎𝑑𝑑𝐼𝑡𝑒𝑚
• 𝑢𝑝𝑑𝑎𝑡𝑒𝐼𝑛𝑑𝑒𝑥)|(𝑟𝑒𝑚𝑜𝑣𝑒𝐼𝑡𝑒𝑚
• 𝑢𝑝𝑑𝑎𝑡𝑒𝐼𝑛𝑑𝑒𝑥))∗

(10)

We configured TAPIR to stop the execution of the

application when encountering an error. At first we performed

the sequence of interactions that manifested the error during the

21st LACCEI International Multi-Conference for Engineering, Education, and Technology: “Leadership in Education and Innovation in Engineering in the Framework of Global

Transformations: Integration and Alliances for Integral Development”, Hybrid Event, Buenos Aires - ARGENTINA, July 17 - 21, 2023. 9

black-box testing. We loaded a dataset, selected and modified a

data item, and undid the modify operation. Since TAPIR did not

report any error at that moment, we continued working and tried

to modify another data item. Then TAPIR stopped the

execution and reported the error of Listing 5. As we can see in

that error, when removing the modified item, the indexes were

not updated, causing the error detected in Section V.A.

C. White-Box Testing based on MSS using Generotron

An essential class within SpinelViz is Prism, which

encapsulates the prism and provides methods to draw it on the

screen. Class Prism has the following methods:

 drawPrism: to draw the prism on the screen.

 drawSelection: draw a triangle representing the cross

section of the prism that passes through the selected item

(see Fig. 7).

Listing 5 Error reported by TAPIR while executing the protected method

addItem of class ModifiedItems.

--- ERROR FOUND ---
Class: Prism.Strucures.ModifiedItems
Object Code: 35191196
Method Executed: Prism.Structures.
ModifiedItems.addItem
Regular Expression: ^cau(au|ru)*?$
Execution Sequence: caura
----- SYSTEM ABORTING... -----

Fig. 8 Report generated with Generotron for valid and invalid sequences.

 A prism can be drawn at any time after its creation.

However, before drawing a selection, the prism must have been

drawn at least once. Equation 11 shows the MSS that describes

the correct operation of the class.

𝑑𝑟𝑎𝑤𝑃𝑟𝑖𝑠𝑚 • (𝑑𝑟𝑎𝑤𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛|𝑑𝑟𝑎𝑤𝑃𝑟𝑖𝑠𝑚)∗ (11)

We used Generotron to generate test cases for the class

with Base+2 coverage criteria for valid and invalid sequences.

In the symbol mapping, d stands for drawPrism and s for

drawSelection. Fortunately, all the valid sequences generated

by Generotron, following the specified coverage criteria,

executed successfully. However, we faced some problems

when testing the invalid sequences, as the system allowed the

execution of three invalid sequences of calls without reporting

any error. As shown in Fig. 8, SpinelViz allowed the execution

of the invalid sequences {𝑠, 𝑠 • 𝑑, 𝑠 • 𝑠}, meaning that the system

did not report an error when a selection was drawn without

drawing a prism first. Despite the fact that these sequences

should not occur during normal execution, the class is expected

to be robust enough to withstand misuse.

VI. CONCLUSIONS & FUTURE WORK

With the dissemination of information visualization across

different type of platforms, devices, and application domains

comes the need to ensure their quality in a way that has never

been required before. In this context, it is essential to develop

new and better methodologies and tools that allow the

visualization developer to ensure the correct functioning of

visual representations and interactions. Software engineering

offers the basis for adapting existing testing techniques to the

particularities of information visualization and also the

possibility of creating new techniques.

We have presented a series of tools for testing visualization

implementations from both a black-box and a white-box

perspective. From a white-box point of view, we adapt the

TAPIR testing framework to work with C#. The entire source

code is available open-source at [43]. However, the framework

lacks expressiveness in regular expressions for both testing

perspectives. In particular, in the current state, it is only possible

to represent actions but not conditions on those actions.

Furthermore, although it is possible to automatically generate

test cases from the regular expressions, the framework does not

allow their automatic execution. These two framework

deficiencies are the ones that need the most attention.

REFERENCES

[1] E. Oztemel and S. Gursev, “Literature review of Industry 4.0 and related

technologies,” Journal of Intelligent Manufacturing, vol. 31, no. 1, pp.

127–182, 2020.
[2] M. Lee, J. J. Yun, A. Pyka, D. Won, F. Kodama, G. Schiuma, H. Park, J.

Jeon, K. Park, K. Jung et al., “How to respond to the fourth industrial

revolution, or the second information technology revolution? Dynamic
new combinations between technology, market, and society through open

innovation,” Journal of Open Innovation: Technology, Market, and

Complexity, vol. 4, no. 3, p. 21, 2018.
[3] Y. Lu, “Industry 4.0: A survey on technologies, applications and open

research issues,” Journal of industrial information integration, vol. 6, pp.
1–10, 2017.

[4] R. M. Kirby and C. T. Silva, “The need for verifiable visualization,” IEEE

Computer Graphics and Applications, vol. 28, no. 5, pp. 78–83, 2008.

[5] A. Spillner and T. Linz, Software Testing Foundations: A Study Guide for

the Certified Tester Exam-Foundation Level-ISTQB® Compliant.

Dpunkt. verlag, 2021.
[6] P. C. Jorgensen, Software testing: a craftsman’s approach. Auerbach

Publications, 2013.

[7] M. D. Gerst, M. A. Kenney, and I. Feygina, “Improving the usability of
climate indicator visualizations through diagnostic design principles,”

Climatic Change, vol. 166, no. 3, pp. 1–22, 2021.

[8] A. Vizoso, “Information Visualization and Usability: Tools for ´ Human
Comprehension,” in Journalistic Metamorphosis. Springer, 2020, pp. 85–

98.

21st LACCEI International Multi-Conference for Engineering, Education, and Technology: “Leadership in Education and Innovation in Engineering in the Framework of Global

Transformations: Integration and Alliances for Integral Development”, Hybrid Event, Buenos Aires - ARGENTINA, July 17 - 21, 2023. 10

[9] D. Dowding and J. A. Merrill, “The development of heuristics for

evaluation of dashboard visualizations,” Applied clinical informatics, vol.

9, no. 3, p. 511, 2018.

[10] I. Banerjee, B. Nguyen, V. Garousi, and A. Memon, “Graphical user

interface (GUI) testing: Systematic mapping and repository,” Information
and Software Technology, vol. 55, no. 10, pp. 1679–1694, 2013.

[11] A. M. Memon and B. N. Nguyen, “Advances in Automated Model-Based

System Testing of Software Applications with a GUI Front-End,” in
Advances in Computers, ser. Advances in Computers, M. V. Zelkowitz,

Ed. Elsevier, 2010, vol. 80, pp. 121–162.

[12] I. Banerjee, “Advances in model-based testing of GUI-based software,”
in Advances in Computers. Elsevier, 2017, vol. 105, pp. 45–78.

[13] T. D. Hellmann, A. Hosseini-Khayat, and F. Maurer, “Agile interaction

design and test-driven development of user interfaces–a literature
review,” Agile Software Development, pp. 185–201, 2010.

[14] S. Supriyono, “Software Testing with the approach of Blackbox Testing

on the Academic Information System,” IJISTECH (International Journal
of Information System & Technology), vol. 3, no. 2, pp. 227–233, 2020.

[15] M. Roggenbach, A. Cerone, B.-H. Schlingloff, G. Schneider, and S.

Shaikh, Formal Methods for Software Engineering: Languages, Methods,
Application Domains. Springer International Publishing, 2020.

[16] S. Lauesen, “Usability engineering in industrial practice,” in Human-

Computer Interaction INTERACT’97. Springer, 1997, pp. 15–22.
[17] C. Ware, Information visualization: perception for design. Morgan

Kaufmann, 2019.

[18] S. H. Kazmi, F. Azam, M. W. Anwar, and B. Maqbool, “A MetaModel
for Automated Black-Box Testing of Visualization Based Software

Applications,” in Proceedings of the 2020 9th International Conference on
Software and Computer Applications, 2020, pp. 183–187.

[19] A. Li, L. Hong, and J. Cao, “Study on the method of cartographic

visualization quality automated testing,” in 2010 18th International
Conference on Geoinformatics, 2010, pp. 1–6.

[20] M. L. Larrea, “Black-box testing technique for information visualization.

Sequencing constraints with low-level interactions,” Journal of Computer
Science & Technology, vol. 17, 2017.

[21] S. D. P. Mendonc¸a, Y. P. D. S. Brito, C. G. R. Dos Santos, R. D. A. D.

Lima, T. D. O. De Araujo, and B. S. Meiguins, “Synthetic datasets ´
generator for testing information visualization and machine learning

techniques and tools,” IEEE Access, vol. 8, pp. 82 917–82 928, 2020.

[22] T. Etiene, D. Jonsson, T. Ropinski, C. Scheidegger, J. L. Comba, ¨ L. G.
Nonato, R. M. Kirby, A. Ynnerman, and C. T. Silva, “Verifying Volume

Rendering Using Discretization Error Analysis,” IEEE Transactions on

Visualization and Computer Graphics, vol. 20, no. 1, pp. 140–154, 2014.
[23] Etiene, et al, “Topology Verification for Isosurface Extraction,” IEEE

Transactions on Visualization and Computer Graphics, vol. 18, no. 6, pp.

952–965, 2011.
[24] M. L. Larrea and D. K. Urribarri, “TAPIR: An Object-Oriented

Programming Testing Framework based on Message Sequence

Specification with Aspect-Oriented Programming,” in XXVI Congreso
Argentino de Ciencias de la Computaci´on (CACIC), 2020, pp. 389–398.

[25] S. Kirani and W. T. Tsai, “Specification and Verification of Object-

Oriented Programs,” University of Minnesota, Tech. Rep., 1994.
[26] F. Daniels and K. Tai, “Measuring the effectiveness of method test

sequences derived from sequencing constraints,” in Proceedings of

Technology of Object-Oriented Languages and Systems-TOOLS 30 (Cat.
No. PR00278). IEEE, 1999, pp. 74–83.

[27] H. R. Hartson, A. C. Siochi, and D. Hix, “The UAN: A user oriented

representation for direct manipulation interface designs,” ACM
Transactions on Information Systems (TOIS), vol. 8, no. 3, pp. 181–203,

1990.

[28] J. S. Yi, Y. ah Kang, J. Stasko, and J. A. Jacko, “Toward a deeper
understanding of the role of interaction in information visualization,”

IEEE transactions on visualization and computer graphics, vol. 13, no. 6,

pp. 1224–1231, 2007.
[29] B. Shneiderman, “The eyes have it: A task by data type taxonomy for

information visualizations,” in The craft of information visualization.

Elsevier, 2003, pp. 364–371.
[30] B. Kovalerchuk, B. Kovalerchuk, and J. Schwing, Visual and spatial

analysis. Springer, 2004.

[31] P. R. Keller, M. M. Keller, S. Markel, A. J. Mallinckrodt, and S. McKay,

“Visual cues: practical data visualization,” Computers in Physics, vol. 8,

no. 3, pp. 297–298, 1994.

[32] “Daily confirmed COVID-19 deaths, rolling 7-day average, Nov 1, 2021,”

https://ourworldindata.org/grapher/daily-covid-deaths-7-day?time=2021-

11-01&country=∼CHN, accessed: 2021-11-13.
[33] M. Friske, B.-H. Schlingloff, and S. Weißleder, “Composition of Model-

based Test Coverage Criteria,” in MBEES, 2008, pp. 87–94.

[34] S. H. Kirani and W. Tsai, “Specification and verification of objectoriented
programs,” Ph.D. dissertation, Citeseer, 1994.

[35] M. L. Larrea, J. I. Rodriguez Silva, M. N. Selzer, and D. K. Urribarri,

“WhiteBox Testing Framework for Object-Oriented Programming. An
approach based on Message Sequence Specification and Aspect Oriented

Programming,” in Argentine Congress of Computer Science. Springer,

2018, pp. 143–156.
[36] M. L. Larrea and D. K. Urribarri, “Expanding the scope of a testing

framework for Industry 4.0,” in XXVII Congreso Argentino de Ciencias

de la Computación (CACIC). 2021.
[37] R. Laddad, AspectJ in Action: Practical Aspect-Oriented Programming.

Greenwich, CT, USA: Manning Publications Co., 2003.

[38] H. Bopuri and R. Salman, “Aspect Oriented Programming Through

C# .NET,” International Journal of Software Engineering (IJSE). CSC

Journals, Kuala Lumpur Malaysia, vol. 4, no. 1, pp. 23– 32, 2013.

[39] M. L. Ganuza, S. M. Castro, G. Ferracutti, E. A. Bjerg, and S. R. Martig,
“SpinelViz: An interactive 3D application for visualizing spinel group

minerals,” Computers & Geosciences, vol. 48, pp. 50–56, 2012.

[40] M. Schiaffino, M. L. Larrea, M. L. Ganuza, D. K. Urribarri. A Testing
Tool for Information Visualizations based on User Interactions. Journal of

Computer Science & Technology, vol. 22, no. 1, pp. 78–92, 2022. DOI:

10.24215/16666038.22.e06
[41] Rodríguez Silva, J. I., & Larrea, M. L. (2018). White-Box Testing

Framework for Object-Oriented Programming based on Message

Sequence Specification. In XXIV Congreso Argentino de Ciencias de la
Computación (La Plata, 2018).

[42] Test Suite Editor, https://cs.uns.edu.ar/~dku/vis/visualization-sci-

testing/editor. Accessed: 2023-05-02.
[43] TAPIR, White-box Testing Framework, https://cs.uns.edu.ar/~mll/lapaz/.

Accessed: 2023-05-02.

[44] Generotron, http://www.cs.uns.edu.ar/~dku/vis/mss/editor. Accessed:

2023-05-02.

https://cs.uns.edu.ar/~dku/vis/visualization-sci-testing/editor
https://cs.uns.edu.ar/~dku/vis/visualization-sci-testing/editor
https://cs.uns.edu.ar/~mll/lapaz/
http://www.cs.uns.edu.ar/~dku/vis/mss/editor

