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Abstract– Potatoes are one of the staple foods in Boyacá and 

play an important role in family nutrition and food security in 
Colombia. Therefore, timely and accurate information on the 
irrigation of this crop is relevant in agricultural decision-making, 
the sustainable development of its production and the reduction of 
unnecessary water consumption. This study estimated the 
irrigation prescription of a potato crop from crop meteorological 
information with the support of IoT technologies to solve the 
problem of inefficient water dosing in the crop. Two deep learning 
models were developed, a One-Dimensional Convolutional Neural 
Network (1D-CNN) and a short-term long-term memory neural 
network (LSTM). Training data was collected daily from a potato 
crop from 2018 to 2020 using two weather stations located in the 
UsoChicamocha irrigation district. To predict irrigation 
prescriptions, deep learning architectures were trained using 
Python® by selecting input climatic variables measured with a 
subsystem of sensors installed in the crop and an actuation 
subsystem with control of Latch-type solenoid valves, both 
remotely controlled wirelessly.  The algorithms were validated by 
calculating precision metrics such as MSE and coefficient of 
determination. The results showed that the LSTM model surpassed 
the 1D-CNN model, obtaining training and validation errors less 
than 0.096 and presenting greater precision in the estimation of 
crop irrigation, giving a coefficient of determination R2 between 
0.881 and 0.919. Irrigation prediction algorithms using deep 
learning techniques achieved promising results and serve as a 
decision support tool for farmers to automatically decide when and 
how much water to irrigate. 

Keywords-- Deep Learning, CNN, LSTM, Irrigation 
Prescription, IoT, Smart Farming. 

 
I.  INTRODUCTION 

For the agricultural sector of the department of Boyacá in 
Colombia, it is necessary to develop irrigation methods based 
on precision agriculture. Specifically, potato crops require the 
use of irrigation forecast estimation technologies that 
contribute to increasing economic and productive yields, 
minimizing the environmental impact that these tasks can 
produce [1].   

Precision farming is a strategy based on the use of new 
technologies, which allows the productivity of the land to be 
managed more efficiently, maximizes income and minimizes 
environmental impact [2]. With the advancement of new 
technologies in telemetry, remote sensing, communications, 
signal processing, internet connectivity and scientific-technical 
knowledge in these areas, it is possible to create crop 

ecosystems based on the Internet of Things (IoT) [3].  
IoT allows the connection and monitoring of objects 

located over long distances using WSN technologies and 
centralized data collection systems connected to the network 
[4, 5]. For precision irrigation systems, based on IoT, humidity 
sensors located in the crop are used, weather stations close to 
the planted area and actuator systems on solenoid valves that 
allow irrigation supported by technical approaches, which take 
into account the dynamic behavior of the crop [6, 7]. The 
irrigation prescription and application methods that are now 
available can be divided into five types: 

- Through soil variables: where soil sensors are used to 
measure and process data on the Volumetric Water Content 
(VWC) or the Potential of the Soil Matrix (PCM) [8]. 

- Through climatological variables: which are based on 
calculations of missing water, through formulas of water 
balance and meteorological data, to calculate the 
Evapotranspiration (ET) [9]. 

- Using plant parameters: in this method, remote sensing 
tools are used (satellites, drones and Geographic Information 
Systems (GIS) for the management of irrigation in crops) and 
sensors connected directly to the plants [10]. 

- Using crop models: several models endorsed by 
international organizations such as FAO are used, which allow 
estimating the hydric status of the soil and the particular 
requirements in each cultivation stage [11]. 

- With the farmer's experience: it is based entirely on 
empirical data acquired by each farmer in his field and on his 
own experiences. 

All of these methods can be integrated and automated 
through IoT-based technologies, cloud computing, and the use 
of machine learning algorithms. Additionally, Deep Learning 
(DL) techniques have been used in applications for agriculture, 
since agricultural processes are characterized by the 
biodiversity of products and the variability of crop conditions. 
DL extends its application in the estimation of sowing 
processes, crop yield, prediction of irrigation prescription, 
application of nutrients and fertilizers in the plots, collection of 
products, identification of diseases, climate and soil mapping, 
among others, processing information automatically [12-18].  

This work explains the implementation and development 
of an irrigation prescription forecasting system in a potato crop 
using IoT technologies for the acquisition and transmission of 
crop data measured by a sensor network. The treatment of the 
cultivation variables is transmitted remotely, to enter an Digital Object Identifier: (only for full papers, inserted by LACCEI). 

ISSN, ISBN: (to be inserted by LACCEI). 
DO NOT REMOVE 

ISBN: 978-628-95207-4-3. ISSN: 2414-6390. Digital Object Identifier: 10.18687/LACCEI2023.1.1.965



21st LACCEI International Multi-Conference for Engineering, Education, and Technology: “Leadership in Education and Innovation in Engineering in the Framework of Global 
Transformations: Integration and Alliances for Integral Development”, Hybrid Event, Buenos Aires - ARGENTINA, July 17 - 21, 2023. 2 

irrigation prescription estimation system based on deep 
learning. 

Crop variables such as maximum, minimum and average 
temperature, soil moisture and rainfall were measured daily for 
three years. The Evapotranspiration of the crop was calculated, 
and together with the climatic and soil variables were entered 
as input data to the deep learning algorithms to make reactive 
and proactive decisions about the prescription of irrigation in 
the potato crop through an infrastructure of drip irrigation.  

II. MATERIALS AND METHODS 

A. Studio Site Selection 
This study was developed in potato crops from Finca San 

Carlos located in the municipality of Tibasosa, Boyacá, 
Colombia. The land belongs to large-scale Irrigation and 
Drainage District of Chicamocha (UsoChicamocha). The 
UsoChicamocha Irrigation Station has eleven irrigation units 
with one pumping station each as illustrated in Fig. 1.  

 

 

Fig. 1. Location of the study field in the UsoChicamocha Irrigation District 
and Irrigation Unit (9) of Tibasosa. 

 

The water source for crop irrigation is the La Copa dam, 
and the water is distributed along the Chicamocha riverbed. 
The potato crop is located in the Irrigation Unit of Tibasosa (9 
in Fig. 1). The Tibasosa irrigation unit supplies water from the 
potato crops on the San Carlos farm through a pumping 
station. Four lots were used, with an approximate total area of 
100 m2, which are located with central coordinates at 5.76534 
° N, - 72.98283 ° W. 

Cultivation lots have an average elevation of 2575 m.a.s.l. 
and it has a dry-cold climate. The lots have a bimodal regime 
and a water deficit during most of the year, the winters are 
short, cool and humid with a concentration of rains between 
April and May in the first semester and between October and 
November in the second semester, according to with data 
collected over 10 years [19]. Temperature does not drop 
below 7 °C or rise above 21 °C, where the average annual 
temperature is 14.05 °C. The average annual brightness in the 
Irrigation unit Tibasosa is 1853, with a high qualification for 
the sowing of agricultural species [20].   

 

B. IoT Based Architecture 
Each intelligent system houses the trained deep learning 

model implemented on a RaspBerry Pi platform that is 
connected to a Davis Vantage Pro2 Series weather station, 
allowing it to access data on ambient temperature, soil 
moisture, precipitation, and evapotranspiration [21]. 

Potato crop was divided into four lots of 25 m2. Each 
crop is supervised and managed by four intelligent systems that 
have a sensor subsystem in the center of the crop and an 
actuation subsystem with control of a Latch-type solenoid 
electrovalve at the entrance to the irrigation supply. A water 
supply with constant outlet pressure is guaranteed for each 
crop, so that there is a linear relationship between the opening 
time of the solenoid valve and the amount of resource applied. 

Access to meteorological data allows the Smart system to 
make irrigation decisions according to the water balance 
equation of the crop expressed in (1).  

 

)(1 mmDPETRIWCWC CAINRRtt −−++= −           (1) 
 

Where WCt is the water content in the soil in the current 
day (mm), WCt-1 is the water content in the soil of the previous 
day (mm), IRR and RAIN are the irrigation applied and the 
rainfall that fell last day (mm) respectively, ETC is the 
accumulated evapotranspiration of the previous day (mm) and 
DP the deep percolation (mm) [22]. With the data acquired in 
the field and from the meteorological station strategically 
located near the crop, the amount of irrigation to be applied 
was determined by calculating the difference in the volumetric 
water content and through changes that the farmer can make 
from the mobile application, the schedules of when to carry out 
the watering process. 

The IoT based architecture showed in Fig. 2 has been 
proposed to collect, transmit and process the climatic and soil 
variables of the potato crop (air temperature, soil moisture, and 
precipitation) of farming land along with the weather forecast 
information to manage the irrigation efficiently. 

 

Fig. 2. IoT based arquitecture for Prescription Irrication Prediction using Deep 
Learning (DL). 

The Smart Multiple Sensors Array (SMSA) is the 
Measurement Station that allows the acquisition of field 
information. Central Station is considered the brain of the 
prescription irrigation system where the crop information is 
stored and analyzed, as well as being the direct connection to 
the database located in the Firebase computer services. 
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Irrigation Station is the system in charge of acting on the 
solenoid valves of the system. Weather Station is responsible 
for acquiring data from the environment around the crop and a 
communication system with the farmer based on a mobile user 
application (MUA) for management irrigation system.  

 
C. Dataset Collection 
The set of daily climatic data for the potato crop were 

collected through one weather station located in the field El 
Clan that belongs to the Tibasosa irrigation unit (9 in Fig. 1), 
during the period of time from June 2018 to June 2021. This 
dataset provided selected climatic variables based on daily 
historical data that include rain, maximum, minimum and mean 
temperature, reference crop evapotranspiration and water 
content in soil (Table I). 

TABLE I 
WEATHER AND SOIL INFORMATION FOR TRAINING. 

Data 
Source 

Feature 
Name Unit Description 

Cl
im

at
ic

 
D

at
a 

TAVG 
TMIN 
TMAX 
RAIN 
WC1 
WC2 
RN 

°C 
°C 
°C 

mm / day 

% 
% 
H 

Daily Average Air Temperature. 
Daily Minimum Air Temperature. 
Daily Maximum Air Temperature. 
Daily Cumulative Rainfall 
Water Content in Soil at 20 cm.  
Water Content in Soil at 40 cm. 
Daily Hours of Solar Radiation  

 

Deep learning models require a large volume of data to 
train. Furthermore, recording crop yields based on different 
irrigation schedules is too slow and sometimes impossible. 
Evapotranspiration (ET) is the amount of water that 
evaporates from the soil and the soil water content (SWC) is 
the volume of water per unit volume of soil. ETC was 
calculated and used as input for the water balance equation. 
ETC was estimated from meteorological data using the FAO-56 
Penman-Monteith Equation (2) [9]: 
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Where RN is the net solar radiation, G is the heat flux from 
the ground, p is the pressure deficit, γ is the psychometric 
constant, WS is the wind speed and TAVG is the mean daily 
temperature. With the amount of rainfall measured, ET was 
calculated in an hourly time interval over a 24-hour period and 
summarized in a daily time interval. The advantage of using 
deep learning models is that it does not require manual 
adjustments once the model is trained and can be used 
automatically. These models can be used to create a decision 
support system for irrigation scheduling. 

D. Data Pre-Processing 
In the preprocessing phase, the data set was prepared so 

that the characteristic extraction phase was more efficient. The 
climatic data set for the period from June 2018 to February 
2020 (60%) was reserved for model training, the data set from 
March 2020 to October 2020 (20%) was used for validation 
and the dataset for the period November 2021 to June 2021 

(20%) were used to test the models, respectively. In time series 
modeling, the estimation becomes less accurate gradually, so it 
is more advantageous to train the models with real data when 
available. 

During the training phase, the dataset was used to update 
the parameters of the networks. The validation dataset was 
used during the training phase to monitor the process and 
detect overfitting [23]. Finally, the trained models were tested 
with the test dataset characterized as new and unexamined 
(Fig. 3). 

 

Fig. 3. Scheme of the Data Preprocessing for predict the irrigation 
prescription. 

The training, validation and test data consisted of time 
series spaced every hour. The variables were normalized to 
ensure that they remain on the same scale. This preprocessing 
guarantees a stable convergence of parameters in the model. 
The standardization formula used in the studied data set was a 
Min-Max normalization model. For each variable in the data 
set, the minimum value of that variable is converted to 0, the 
maximum value is converted to 1, and all other values are 
converted to a decimal number between 0 and 1 using (3): 
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xxx
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−

=                                       (3) 

Where xi represents the data in the i-th of variable j, min(xj) 
is the minimum value of x in variable j and max(xj) is the 
maximum value of x in variable j, for j = 1, 2, ..., 6. 

E. Developed Models 
1) Architecture and parameters of the One-Dimensional 

Convolutional Neural Network (1-DCNN): Convolutional 
Neural Networks (CNN) have been successful in machine 
vision applications to process crop images mainly in 
classification, recognition, detection and segmentation 
processes [24-26].  

Convolution and Max Pooling Filter principles used in 
images can be simplified to work with one-dimensional data in 
the form of time series. CNN models make predictions based 
on current input data and do not use past observations to make 
future decisions. The 1-DCNN model proposed reads the data 
from delayed observations and extracts useful features to 
generate future predictions.  

The architecture of a CNN is made up of a stack of 
connected hidden layers that are reduced in width from input 
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to output. CNN thickening reduction is done to ensure 
condensation of information into more abstract concepts in 
deeper layers. Each shrinking stage generally consists of one or 
more convolution layers and several pooling layers connected 
to each other. 

First a set of convolutional layers is organized using a 
local layer-shared filter that generates the response of the 
filter's convolution with its inputs in the output. The outputs of 
the convolutional layers usually have the same dimension as the 
inputs. Second, the outputs of the convolutional layers are the 
activations that go into the pooling layers, which use a 
dimension reduction operator (for example, max) to thin the 
layers.  

As a result, a hidden neural unit has a smaller field of view 
than the entire input layer, that is, a neuron located in the 
upper layers has a field of view indicated by dashed black lines 
as shown in Fig. 4. This hierarchical design helps to capture the 
most prevalent local training characteristics and extracts the 
most essential parameters on a larger scale in deeper layers.  

 

Fig. 4. Structure of the One-Dimensional Convolutional Neural Network used 
in this study. 

The parameters learned by the convolutional layers are 
made thanks to the application of the layer-shared filters. All 
neurons in the convolutional layers share a single filter that 
reduces the number of parameters compared to a fully 
connected layers, making CNN training easier. In this work, 
several tests were performed using the 1-DCNN architecture. 
The model begins with the 1D convolutional layer composed 
of 16 convolutional filters, a kernel size of 3 and a Rectified 
Linear Unit (ReLU) as activation function. Added a max 
pooling layers to recover the input characteristics, into more 
meaningful and useful inputs. The inputs are flattened with the 
next flatten layer which is used to split convolutional layers and 
fully connected layers and get the first prediction step. 

2) Architecture and parameters of the Long Short-Term 
Memory model (LSTM): Another deep learning architecture 
uses Recurrent Neural Networks (RNN) to process sequential 
data efficiently. RNN integrate feedback loops, allowing 
through them that the information persists during some training 
periods (epochs), by means connections from the outputs of 
the layers, which embedding their results on the input data.  

Basically, the RNN remember previous states and use this 
information to predict which one will be next. The connections 
between nodes form a graph directed along a time sequence, so 
they are applied in lists to handle time series. RNNs have been 
introduced for sequential learning, as they are capable of 
storing and relating prior information. 

Long Short Term Memory (LSTM) are a special type of 
RNN networks that have computational units with the ability 
to dominate or suppress input characteristics, allowing them to 
store only characteristic weights more important. While 
standard RNN can model short-term dependencies (that is, 
close relationships in the time series), LSTMs can learn long-
term dependencies and determine the optimal time delay for 
time series problems. In this sense, LSTMs operate dependent 
on experience over time and can learn when to forget and how 
long to keep state information. LSTMs outperform RNNs by 
holding the value of the previous output for a short period. 

Given this characteristic, LSTMs are used mainly for 
processing and estimating complex variables and combinational 
inputs. LSTM have been used in crops such as tomato, 
soybean and corn, where climate data and environmental 
parameters are mapped. These crop variables are periodically 
monitored and data are generated in the form of time series 
that are analyzed and processed to provide diagnosis and 
estimation of irrigation prescriptions in crops with very good 
efficiency [27-29]. 

The solution to the vanishing gradient problem is the 
LSTM model that contain specially designed units called gates 
and memory cells. The gates are simply neurons with weights 
or gains that have the ability to learn: The gates surround the 
memory cell Ct to control the information flow. After training, 
the input gate it controls which entries are significant enough 
to remember. The forget gate ft decides how long and what 
past state memory should be retained. The output gate ot 
determines the amount of memory that is used to produce the 
output. The integrated operation of the gates allows the 
network to remember information from the past and discard 
non-essential information. 

 

 

Fig. 5. Structure of the LSTM Neural Network used in this study. 
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The LSTM architecture proposed and implemented in this 
work uses a model known as “many to one”, which means that 
multiple data inputs can be predicted in the form of time series 
to predict a single value [30]. Fig. 5 shows the LSTM 
architecture developed where a single input layer was arranged 
that receives the input data xt, a single hidden recurring layer 
that stores the information in a hidden state ht in the memory 
cell of the LSTM and a single layer output ot. The hidden layer 
contains the memory units of the LSTM that manage and 
control the input, output and storage of data. Tanh or sigmoid 
transformation operators are provided in each LSTM memory 
cell that scale the data to facilitate the information flow. 

Each memory cell contains one or more memory cells and 
four multiplicative gates: input it, forget f t, cell gt and output ot 
[31], to overcome the short-term memory limitation of the 
RNN. The memory cells memorize the value of the temporary 
state in arbitrary time intervals and the four gates control the 
opening or closing of the flow from the new input xt to the next 
cell since it enters through the input gate it.  

The learning process discriminates what information is 
important and what is not, as time passes while the assigned 
weights are updated. The relationships that define the 
operation and structure of the model of each LSTM memory 
cell are defined in (4) to (9) with initial values of the state of 
cell C0 = 0 and of the recurring output h0 = 0: 
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Where x t is the input at time t, Ct is the current cell state 

and ht the output layer hidden at time t. Furthermore, σ is the 
sigmoid function, tanh is the hyperbolic tangent function. 
Vectors U define the weights of each gate in the hidden output 
layer, vectors W are the weights of each gate in the input layer, 
and b are the additive training bias vectors for each gate. The 
operator ⊕ is the Hadamard multiplier that performs the 
vector product to generate outputs of the same dimensions as 
the input. 

In the LSTM model, an epoch corresponds to one pass of 
all the training examples. For each epoch a loss function is 
used to evaluate how well the specific algorithm models the 
dataset. If the predictions deviate too much from the actual 
results, the loss function will produce a large value. The 
number of LSTM cell units proposed in the model was 32. 
Dropout is a technique used during training to avoid 
overfitting.  

F. Hyperparameter tuning and reproducibility 
Hyperparameters determine the structure of the network 

model and how it is trained. The results of multiple simulations 
of the same algorithm with different hyperparameters varied in 

this work. For the training of the irrigation prediction models 
in the potato crop, several hyperparameters were selected and 
iteratively tested to determine the best performances of the 
deep learning models such as the number of neurons or nodes 
per layer, batch size, number of layers, dropout values, number 
of epochs, activation functions and optimizers. Table II 
describes the hyperparameters selected to train the deep 
learning models that presented the best results. 

TABLE II 
HYPERPARAMETERS SETTED TO TRAIN DEEP LEARNING MODELS. 

Neural Network 
Model Hyperparameters 

1-DCNN 
 

LSTM 

Nodes per Layer 
Epochs 

Batch Size 
Activation Function 

Neurons 
Optimizer 

Dropout Size 

64, 128, 256 
64, 128 

16, 32, 64 
ReLU 

64, 128, 256 
Adam 

0, 0.1, 0.2 
 

Models with 16 and 32 nodes performed very poorly and 
were excluded from the experimental results. Finally, the 
network architectures were tested with 64, 128, and 256 nodes 
per layer. The activation function ReLU was used to capture 
the non-linear relationship between input and output, as it 
looks for positivity in the input arguments. If the input value is 
positive, it is returned the value; otherwise, if the value is less 
than zero, value zero (0) is returned as the final output. 

The optimization algorithm selected to minimize the loss 
function was Adam optimizer. The Adaptive Moment 
Estimation Algorithm (Adam) allows to calculate an adaptive 
learning rate for each of the parameters. Adam also maintains 
an exponentially decreasing sum of the past gradients. This 
optimizer works very well in practice as it converges faster, 
and the overall learning speed of the model is also quite fast 
and efficient, compared to other optimizers. 

G. Implementation Details 
TensorFlow library for numerical applications was used 

together with Keras Deep Learning library. Keras allows the 
configuration and training of deep neural networks developed 
on the Python® programming platform. For matrix 
calculations, model evaluation and graph display, Numpy, 
Scikitlearn and Matplotlib libraries were used in Python®. The 
deep neural network models were trained using a computer 
equipment with the next specifications: CPU: 2.5 GHz, Intel 
Core I7, and 12 GB of RAM.  

H. Model Evaluation Metrics 
To evaluate the prediction performance of the 

implemented deep learning models, two evaluation metrics 
were used. To measure the losses of the deep learning models, 
the Mean Square Error (MSE) function was applied, which 
calculates the variance presented by the model, defined in (10):  

∑
=








 −
=

N

i i

ii

y
yy

N
MSE

1

2ˆ1
                                      (10) 

To evaluate the precision of the irrigation prescription 
forecast, the Coefficient of Determination R2 was used. R2 is a 
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statistical measure that calculates the variance explained by the 
model on the total variance showed in (11):  
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Where N defines the number of total observations, yi is the 
true value at the i-th time,  is the estimated value by the model 
at the i-th time, and  is the average of the true values and i 
varies from 1 to N. The higher the R2 score, the smaller the 
differences between the observed data and the adjusted values. 

III. ANALYSIS AND DISCUSSION 
A. IoT System 
A network of four cyber-physical systems was 

implemented for the prescription and application of irrigation 
in an experimental potato crop (Fig. 6). It was proposed that 
the networks of intelligent systems for the application of 
irrigation have reactive powers for the prescription and 
application of irrigation, since they depend on the perception 
they have of their environment and the irrigation conditions 
programmed by the user. 

 

Fig. 6. Experimetal Potato Crop used in this study. 

 

Fig. 7. Mobile Application for Irrigation Management and Monitoring. 

The availability of WiFi connectivity in the study area was 
necessary for the display, visualization and interpretation of the 
information in the crop. A mobile application was developed to 
control and visualize the status of growing agents, connected 
to devices in the field, through a cloud computing platform 
(Cloud-FireBase), hence the importance of having a connection 
to Internet Fig. 7. 

B. Training and Testing Performance 
The efficiency of deep learning algorithms can be 

determined by evaluating the models with the application at 
runtime or by calculating evaluation metrics. The overfitting 
and underfitting effects of machine learning models can be 
evaluated by comparing losses in the training and testing stages 
of the prediction algorithms. In the training of the 1-DCNN 
model for the weather station, the results showed that the 
experiments were able to predict the irrigation prescription 
with an MSE lower than 0,105 and validation values around 
0,157. The losses in the prediction of the irrigation prescription 
for the implemented LSTM model were lower compared to the 
1-DCNN model, where the MSE obtained was 0,082 and 
0,096 for training and validation data respectively. 

The lower training and validation losses for the LSTM 
model are evident due to increased functionality in the 
computational units of the LSTM cells. This trend of training 
and validation losses data is listed in Table III. 

TABLE III 
PERFORMANCE PRECISION METRICS FOR THE BEST ITERATION OF THE DEEP 

LEARNING MODELS 

Model 
Training Dataset Validation Dataset 

MSE R2 MSE R2 

1-DCNN 0,105 0,812 0,157 0,867 

LSTM 0,082 0,881 0,096 0,919 
 

Fig. 8. shows the comparison of the loss of precision of 
the deep learning models during the training and validation of 
the dataset for the irrigation prescription of the potato crop in 
terms of the number of epochs. 

 

   

a)                                                  b) 
Fig. 8. Training and Validation loss curves for the best training performance 
in predicting irrigation prescription. a) Loss for 1-DCNN. b). Loss for LSTM. 

 
The number and size of the hidden layers were important 

for the design and evaluation of the deep learning models. The 
highest R2 value and the minimum MSE = 0,157 for the 1-
DCNN model were obtained when 32 epochs were configured, 
a dropout of 0, batch size of 32 and 32 epochs with score of R2 
= 0,867. For the LSTM model with 64 cells, dropout of 0.2, 
batch size of 64 and 128 epochs, the best performance was 
obtained with an MSE = 0,096 and R2 = 0,919.  

These two models had a favorable statistical performance 
and therefore the selection of one of these models over the 
other depends on the available data. 
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a) 

 
b) 

Fig. 9. Irrigation prescription forecast evaluation for trained and validated 
deep learning models and their correlation score. a) 1-DCNN Model, b). 

LSTM Model. 

IV. CONCLUSIONS 

Potato crop in the Department of Boyacá plays an 
important role in the economy and food security of the region 
and the country, since a large part of the population depends 
on it for their livelihood. 

In this work, a precision irrigation prescription prediction 
system was developed in an experimental potato crop that 
integrates remote sensing, IoT and machine learning 
technologies. 

Today, IoT has expanded its capabilities to support smart 
and sustainable agriculture. This type of technological 
applications for agriculture allow the farmer to efficiently 
manage the crop, increasing productivity and product quality, 
improving crop yield and optimizing the use of water 
resources. 

An irrigation prescription prediction system was designed 
and implemented using IoT technologies that automatically 
communicate the central processing station with the 
measurement station and the weather station to make decisions 
about the application of precise irrigation in the crop. The 
central system receives weather data from the environment that 
was entered by two verified deep learning algorithms, stored 
on RaspBerry Pi platforms. 

The estimation of the irrigation prescription in a potato 
crop was developed using two deep learning models: 1-DCNN 
and LSTM. The models were trained using as inputs climatic 
variables such as the maximum temperature, the average 
temperature, the minimum temperature, the amount of water in 
the soil at two depths, the wind speed and the calculation of 
the Evapotranspiration of the crop.  

When performing the training and validation processes 
with the deep learning algorithms, the LSTM model 
outperformed the estimation of irrigation prediction when 
compared with the results obtained by the 1-DCNN model. 

The lowest training and test losses for the hybrid LSTM model 
were 0,082 and 0,096. The LSTM performance algorithm had 
the highest determination coefficient, obtaining a coefficient of 
determination R2 = 0,919, compared to the 1-DCNN model 
score, which obtained a score of R2 = 0,86. 

Although the LSTM model presented better prediction 
results in the irrigation prescription in the potato crop with 
respect to the results of the 1-DCNN model, the differences in 
the irrigation prescription estimates of the deep learning 
models were successful. Validation of these deep learning 
models allowed farmers to properly schedule potato crop 
irrigation according to water supply predictions.  
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