
21st LACCEI International Multi-Conference for Engineering, Education, and Technology: “Leadership in Education and Innovation in Engineering in the Framework of Global

Transformations: Integration and Alliances for Integral Development”, Hybrid Event, Buenos Aires - ARGENTINA, July 17 - 21, 2023. 1

Development of a Multimodal Robot Controlled by

Raspberry Pi Using Python-Based Graphical

Programming Environment
Luis Segura, Student1 , Emilio Higuchi, Student2 , Leonardo Vinces, Magister3 and José Oliden, Magister4

1,2,3,4 Universidad Peruana de Ciencias Aplicadas, Perú, u201815453@upc.edu.pe, u201719027@upc.edu.pe,

leonardo.vinces@upc.pe, pceljoli@upc.edu.pe

Abstract– In the fields of computer science and electronics,

resources for artificial intelligence and robotics tend to be aimed at

experts, making it challenging for students to enter these fields

without specialist assistance. To address this issue, this project

proposes a cost-effective and educational development environment

for graphical programming utilizing node-based programming and

a Raspberry Pi-controlled robot. The software architecture,

developed in Python, incorporates graphical resources to enable

signal processing, remote connection, and artificial intelligence

libraries under the functional programming paradigm. The

resulting programming environment is intuitive and user-friendly,

offering artificial intelligence capabilities to a multimodal robotic

system controlled by Raspberry Pi.

Keywords— STEAM, reactive programming, GUI, educational

robotics, artificial intelligence, multimodal communication,

computer vision, teaching programming, Learning artificial

intelligence, Programming language, Raspberry Pi, graphical

programming, programming by nodes.

I. INTRODUCTION

According to previous research, teaching robotics in

STEM education has positive impacts on students by

providing hands-on experience with technology, facilitating

the understanding of abstract concepts, promoting logical

thinking, and enabling practical methodologies for teachers

[1][2][3][4]. However, the complexity of available tools and a

lack of confidence among mentors regarding the management

of new technologies hinder the efficient dissemination of

knowledge in these fields [5][6][7].

To address this issue, a need arises for a system that

integrates robotics and artificial intelligence algorithms in a

simple, didactic, and affordable way. Raspberry Pi is a

suitable ecosystem due to its compatibility with affordable

components and programming complexity. Various

educational robotics projects have used Raspberry Pi as the

central controller.

Multiple educational robotics projects have utilized

different versions of Raspberry Pi as the central controller. For

instance, Bindu, Alam, and Neloy [8] proposed a multipurpose

robotic arm with six degrees of freedom that transmits real-

time camera images via an HTTP server. However, control is

carried out via radio frequency, and the programming

environment is unspecified.

Educational robotics proposals mostly use existing

development environments, with Scratch being the best-

known platform for its simplicity in block programming and

integration with ROS. For robots that use Arduino controllers,

the generally used environment is the Arduino IDE. Vega and

Cañas [9] present an educational robot programmed through

an API accessible from Python, or generated through Scratch,

while Arvin et al. [10] proposes a remote-controlled robot

programmed through Arduino IDE or graphical programming

of mBlock. However, neither of these proposals includes

support for running artificial intelligence algorithms or

multimodal control.

After excluding projects concerning specific robot

hardware development, Liang et al. [11] proposed a

framework for robot action teaching, reuse, and refinement,

where a graphical interface permits action details calibration

to optimize robot performance, applying a mathematical

model for process execution. Their solution requires a degree

of automatic planning knowledge related to AI models.

Pacheco and Macedo [12] propose a language to simplify

complex instructions for ROS-based robot control using the

reactive paradigm. However, their solution lacks a graphical

programming environment and artificial intelligence support.

Finally, Berenz and Schaal [13] present a decision tree-based

scripting language for reactive robot control that allows

runtime node modification but requires programming

knowledge and lacks a specialized development environment.

To address these limitations, this research proposes a

graphical development environment using reactive nodes to

program multimodal robot control, with Raspberry Pi as the

primary controller.

II. METHODOLOGY

Digital Object Identifier: (only for full papers, inserted by LACCEI).

ISSN, ISBN: (to be inserted by LACCEI).

DO NOT REMOVE

ISBN: 978-628-95207-4-3. ISSN: 2414-6390. Digital Object Identifier: 10.18687/LACCEI2023.1.1.887

https://orcid.org/0000-0003-3796-0382
https://orcid.org/0000-0003-4802-5453
https://orcid.org/0000-0002-3518-591X
https://orcid.org/0000-0003-2643-327X
mailto:leonardo.vinces@upc.pe

21st LACCEI International Multi-Conference for Engineering, Education, and Technology: “Leadership in Education and Innovation in Engineering in the Framework of Global

Transformations: Integration and Alliances for Integral Development”, Hybrid Event, Buenos Aires - ARGENTINA, July 17 - 21, 2023. 2

Fig. 1 Modular robot block diagram

A. Programming paradigm

To harness the full capabilities of the Raspberry Pi as a

controller and enable remote instruction execution, software

for both the server-side (robot) and client-side (computer with

the programming environment) was developed using Python

as the programming language and its external libraries.

Table I. Comparison of features between existing controllers on the market

Controllers

Features

Processor RAM Frequency I/O Price

Raspberry

Pi 4B

ARM Cortex-A72

64-bit quad-core

2GB 1.5GHz 28 45$

Banana Pi

BPI-M4

ARM Cortex-A53

Quad-Core 64 Bit

1GB 921MHz

40 38$

NVIDIA

Jetson Nano

Quad-core ARM®

A57 @ 1.43 GHz

2 GB 1.35GHz 56 250$

Beaglebone

Black

AM3358BZCZ100

ARM Cortex-A8

512

MB

1GHz 46 $55

A graphical environment was created to locate nodes that

represent complex functions and interconnect them to form a

program for robot controller execution.

The node design comprises two or more attributes that

may possess inputs, outputs, or static values as parameters of

their representative functions. As depicted in Fig 2, the node

attributes specify the type of data they handle, ensuring correct

information entry and exit from the node.

Fig. 2. Basic node model

Each node features a configuration option that reveals a

window for specifying static attribute values, configuring

input details, or presenting real-time changes to the processed

information. By leveraging the node design as depicted in

solutions proposed by [13] and [14], the graphical instructions

are transformed into reactive paradigm functions that run on

the Raspberry Pi. In this paradigm, the system receives an

asynchronous data stream, to which it responds when a change

occurs and executes a specific action.

B. Architecture of the development environment

The proposed solution comprises two interconnected

applications in a local area network: one runs on the computer

where the robot will be programmed graphically, while the

other runs on the Raspberry Pi controller, which controls the

actuators of the robot.

During the development of the programming

environment, external libraries outlined in Table II were

utilized, alongside Python language modules for executing

calculation functions, processing data structures, and

managing information on LAN networks.

Table II. External Python libraries used in the development of the software

Library Function

Dear PyGUI Control the execution, design and updating of the various

components of the graphical interface of the software

Paramiko Establish remote connection to controller via SSH protocol

OpenCV Process the images received from the controller in real time

Visual Studio Code was used as the code editor for its

versatile extensions and multipurpose functions. Development

commenced by creating a virtual Python environment, as

library version differences could result in compatibility errors

with other available projects on the same computer. Fig 3

presents the proposed architecture, where the Main file

initializes the construction of the graphical user interface

(GUI) and the runtime functions that remain active during

software deployment.

Fig. 3. Software architecture

The software's interface comprises four major fields that

perform crucial tasks. The toolbar serves as the primary field,

containing configuration options, file management features for

data preservation, connection to the controller, and model

compilation and training. The instructions window classifies

each function that creates a different node into three

categories: input for data input through peripherals or sensors,

output for actuator control, filtering, and pre-processing of

information, which enables decision-making. The canvas is

where nodes are created, managed, and connected. Finally, the

results window displays errors, warnings, or updates of every

process carried out in the software.

It is important to note that the build process involves

retrieving information from the nodes stored in the canvas and

converting each node into a respective function call statement

that accepts attribute information as parameters. The resultant

21st LACCEI International Multi-Conference for Engineering, Education, and Technology: “Leadership in Education and Innovation in Engineering in the Framework of Global

Transformations: Integration and Alliances for Integral Development”, Hybrid Event, Buenos Aires - ARGENTINA, July 17 - 21, 2023. 3

file is transmitted to the controller, where it is executed based

on the functions stored in it.

Regarding the interface shown in Fig. 4, it can be

observed that the interface is divided into four main fields that

serve as the most significant functionalities of the software.

The toolbar is responsible for various options, such as file

management for data retention, configuring settings,

connecting to the controller, and training models. The

instructions window provides a categorization of each function

into three categories, input for information input through

sensors or peripherals, output for controlling actuators, filters,

or pre-processing that classifies information and makes

decisions about it. The canvas field enables the creation,

management, and connection of nodes. Finally, the results

window displays any errors, warnings, or updates related to

the software's processes.

Fig. 4. Graphical user interface of the software that controls the robot

An essential aspect to note is that during the build

process, the canvas nodes are utilized to convert each node

into a respective function call statement that accepts the

attribute information as parameters. The resulting file is then

transmitted to the controller, which executes it based on the

stored functions.

C. Controller software architecture

The Python file generated by the development

environment is saved in a specific directory and sent to the

controller for execution through operating system instructions.

The file contains function calls that are part of the driver

software architecture and are categorized similarly to nodes

for easy access.

During the file execution process, the input and

preprocessing functions' values are initialized, indicating the

devices, models, protocols, and other characteristics used

during execution. The proposed paradigm being reactive, the

functions are executed in an infinite loop where incoming data

is received from devices, and actions are performed with the

actuators based on the information received.

Fig. 5. Software architecture in the controller

Libraries listed in Table III, required for artificial

intelligence models, computer vision algorithms, and

processing, are installed on the controller, enabling any

function that requires them to access them easily.

The software on the controller has remote connection

instructions, acting as a server to transmit real-time

information from input devices over a local network to

monitor the successful execution of the desired program.

Table III. External python libraries used in the controller

Library Function

OpenCV Acquire and process images in real time and apply artificial

intelligence models for pattern recognition

Tesseract Process the obtained images for text recognition

Mediapipe Process the obtained images for gesture recognition

NLTK Process text as natural language received in files or through

speech recognition

eSpeak Convert text to speech emitted by the robot's speaker

VOSK Convert the audio signal obtained from the microphone into

text rendered in natural language

D. Communications scheme

As mentioned earlier, the robot is remotely controlled

from the programming environment, provided both are part of

the same LAN, and both the client and server can access the

Internet independently. Fig 6 illustrates the SSH protocol for

instruction execution, HTTP for real-time multimedia

transmission, and SFTP for secure file transfer.

Standardized protocols enable only one-way instruction,

but proposals such as Perzanowski et al [9] suggest

multimodal communications, allowing for more intuitive and

didactic programming by considering multiple means of

interacting with the robot.

21st LACCEI International Multi-Conference for Engineering, Education, and Technology: “Leadership in Education and Innovation in Engineering in the Framework of Global

Transformations: Integration and Alliances for Integral Development”, Hybrid Event, Buenos Aires - ARGENTINA, July 17 - 21, 2023. 4

Fig. 6. Scheme of communications and multimodal interaction

In order for the robot to interact with its surroundings, it

relies on communication devices such as a microphone, horn,

and camera. Additionally, the robot can access multimedia

files from a controller or cloud to obtain information from the

virtual environment. By processing data from both

environments, the robot is able to perform actions that have

been programmed by the user.

E. Artificial intelligence models

Information obtained from input devices is processed

using artificial intelligence models, which extract

characteristics and patterns to make decisions. Each model is

simplified into a node, with properties, inputs, and outputs

configured to run in a function on the controller. The specific

models used, along with the library that provides tools to

manage them, are listed in Table IV.

Table IV. Models used to identify patterns in signals

Model Description Library

Haar Cascade

Classifiers

High-speed classifiers optimized for real-

time recognition of objects under pre-trained

models

OpenCV

NLP Natural language processing algorithms

focused on evaluating text data to recognize

human language patterns

NTLK

Neural

networks

LSTM

Short-term memory algorithms focused on

the detection of text patterns in images,

automatic translation or speech recognition

Tesseract

DNN-HMM Hybrid model of deep neural networks

combined with the hidden Markov model for

real-time speech recognition

VOSK

F. Compilation

The development environment allows for the creation and

storage of nodes in a canvas, which can be saved as a JSON

file containing the necessary information for later use. This

file can also be used to generate the main file to be executed in

the controller, according to the structure shown in Figure 7.

The compiler uses a JSON configuration file to translate each

node to its respective Python function and generate the final

file for execution.

Fig. 7. Compilation scheme

III. EXPERIMENTATION

During the experimentation, the programming

environment was presented to 3rd, 4th and 5th grade students

of an educational institution that did not offer a robotics

course in its curriculum. First, the students took a test of prior

knowledge, which provided data to compare at the end of the

activity. They then participated in an introductory theoretical

talk on "Educational Robotics", which provided them with the

necessary information to develop a program using the

provided interface.

Fig. 8. (a) Upper: High School 5th Class, (b) Lower: High School 3rd

Class

They were then given a self-made modular robot

controlled by the Raspberry Pi to test the algorithms they

created with the knowledge they gained. Finally, the students

evaluated the class and the programming environment

21st LACCEI International Multi-Conference for Engineering, Education, and Technology: “Leadership in Education and Innovation in Engineering in the Framework of Global

Transformations: Integration and Alliances for Integral Development”, Hybrid Event, Buenos Aires - ARGENTINA, July 17 - 21, 2023. 5

Fig. 9. Test of a speech instruction recognition algorithm

 During the experimentation, one of the main

complications encountered was the difficulty in addressing the

individual knowledge biases of each student within the limited

number of sessions. Additionally, the sample size was a

limitation for the tests conducted, although the experimental

procedure can be easily replicated using the designed

programming environment.

Fig. 10. Self-made Modular Robot

IV. RESULTS

After comparing the results of the "prior knowledge test"

and the "final test," it was observed that there was an increase

in students' knowledge and understanding of robotics and

educational programming. This finding is supported by Fig.

11, which illustrates the difference in students' knowledge

levels before and after the session in response to test

questions.

Fig. 11. Contrast graph between prior knowledge and acquired

knowledge

Furthermore, the programming interface validations were

analyzed and categorized, as depicted in Fig. 12. The results

indicated that 93% of students characterized the interface as

"friendly" or "very friendly," while 61% reported learning "too

much" in the 80-minute class session, and only 7% believed

that they learned "little." Additionally, the data showed that

32% of the students were "very willing" to pursue a career in

STEM-related fields.

The study reveals that the educational activity positively

impacted students' knowledge of robotics and programming,

as well as their perception of the user-friendliness of the

programming interface. The results suggest that the short 80-

minute class session was effective in promoting students'

interest in STEM careers.

Fig. 12. Pie charts of validations. (a) Top: "Programming

Environment", (b) Center: "How much did you learn in the session?", (c)

Bottom: Pursuing a "STEM" career (c) Bottom: Pursuing a "STEM" career

21st LACCEI International Multi-Conference for Engineering, Education, and Technology: “Leadership in Education and Innovation in Engineering in the Framework of Global

Transformations: Integration and Alliances for Integral Development”, Hybrid Event, Buenos Aires - ARGENTINA, July 17 - 21, 2023. 6

IV. CONCLUSIONS

This paper describes the design and development of a

graphical programming environment that utilizes the reactive

paradigm to enable multimodal control of an intelligent robot

powered by Raspberry Pi. The paper includes a discussion of

programming paradigms, development environment

architecture, and controller software. Additionally, the

communication scheme and artificial intelligence models used

in the development process are presented.

To validate the software's acceptance, a didactic class was

conducted in an educational institution, where 93% of the

students characterized the software as "friendly" or "very

friendly," and 61% reported learning "too much" in a short 80-

minute class session.

Overall, this research resulted in the creation of a user-

friendly, intuitive, and didactic programming environment that

integrates artificial intelligence functions into a multimodal

robotic system controlled by Raspberry Pi..

V. ACKNOWLEDGMENT

To the Research Directorate of the Peruvian University of

Applied Sciences for the nuptial support for the realization of

this research work UPC-EXPOST-2022-2

VI REFERENCES

[1] Anwar, S., Bascou, N. A., Menekse, M., & Kardgar, A. (2019). A

systematic review of studies on educational robotics. Journal of Pre-

College Engineering Education Research (J-PEER), 9(2), 2.

[2] Tiryaki, A., & Adigüzel, S. (2021). The Effect of STEM-Based Robotic

Applications on the Creativity and Attitude of Students. Journal of science

learning, 4(3), 288-297.

[3] Sakulkueakulsuk, B., Witoon, S., Ngarmkajornwiwat, P., Pataranutaporn,

P., Surareungchai, W., Pataranutaporn, P., & Subsoontorn, P. (2018,

December). Kids making AI: Integrating machine learning, gamification,

and social context in STEM education. In 2018 IEEE international

conference on teaching, assessment, and learning for engineering (TALE)

(pp. 1005-1010). IEEE.

[4] Goh, H., & Ali, M. B. B. (2014). Robotics as a tool to stem learning.

International Journal for Innovation Education and Research, 2(10), 66-

78.

[5] Savard, A., & Freiman, V. (2016). Investigating complexity to assess

student learning from a robotics-based task. Digital experiences in

mathematics education, 2(2), 93-114.

[6] Mallik, A., Rahman, S. M., Rajguru, S. B., & Kapila, V. (2018, June).

Fundamental: examining the variations in the tpack framework for

teaching robotics-aided STEM lessons of varying difficulty. In 2018
ASEE Annual Conference & Exposition

[7] Scaradozzi, D., Screpanti, L., Cesaretti, L., Storti, M., & Mazzieri, E.

(2019). Implementation and assessment methodologies of teachers’

training courses for STEM activities. Technology, Knowledge and

Learning, 24(2), 247-268.

[8] Bindu, R. A., Alam, S., & Neloy, A. A. (2019). A Cost-Efficient

Multipurpose Service Robot using Raspberry Pi and 6 DOF Robotic Arm.

Proceedings of the 2019 2nd International Conference on Service

Robotics Technologies - ICSRT 2019. doi:10.1145/3325693.3325701

[9] Vega, J., & Cañas, J. M. (2018). PiBot: An open low-cost robotic

platform with camera for STEM education. Electronics, 7(12), 430.

[10] Arvin, F., Espinosa, J., Bird, B., West, A., Watson, S., & Lennox, B.

(2019). Mona: an affordable open-source mobile robot for education and

research. Journal of Intelligent & Robotic Systems, 94(3), 761-775.

[11] Liang, Y. S., Pellier, D., Fiorino, H., & Pesty, S. (2021). iRoPro: An

interactive Robot Programming Framework. International Journal of

Social Robotics. doi:10.1007/s12369-021-00775-9

[12] Pacheco, H., & Macedo, N. (2020, November). ROSY: An elegant

language to teach the pure reactive nature of robot programming. In 2020

Fourth IEEE International Conference on Robotic Computing (IRC) (pp.

240-247). IEEE. doi: 10.1109/IRC.2020.00045.

[13] Berenz, V., & Schaal, S. (2018). Playful: Reactive Programming for

Orchestrating Robotic Behavior. IEEE Robotics & Automation Magazine,

1–1. doi:10.1109/mra.2018.2803168

[14] Perzanowski, D., Schultz, A. C., Adams, W., Marsh, E., & Bugajska, M.

(2001). Building a multimodal human-robot. IEEE Intelligent Systems,

16(1), 16–21. doi:10.1109/mis.2001.1183338

[15] Marques, L. S., Gresse von Wangenheim, C., & Hauck, J. C. (2020).

Teaching machine learning in school: A systematic mapping of the state
of the art. Informatics in Education, 19(2), 283-321.

[16] Milagros Loayza, Juan Alfaro, Leonardo Vinces, and Christian del

Carpio, " A Novel Mechanical Design for a mobile robot that carries a

load of 30 Kg," 17th LACCEI International Multi-Conference for

Engineering, Education, and Technology: “Industry, Innovation, And

Infrastructure for Sustainable Cities and Communities” (LACCEI), 2019,

doi: /10.18687/LACCEI2019.1.1.124

[17] Mijail Guerrero, Leonardo Vinces, Christian del Carpio, "Development of

a Hand Prototype for Gripper Explosive Grenade of Pineapple Type by

Applying Soft Robotic Elements and Embedded Sensors," 17th LACCEI

International Multi-Conference for Engineering, Education, and

Technology: “Industry, Innovation, And Infrastructure for Sustainable

Cities and Communities” (LACCEI), 2019, doi:

10.18687/laccei2019.1.1.274

[18] Julio Artica, Marco Klepatzky, Leonardo Vinces, Christian del Carpio,

"Development of a positioning system using hybrid control to trace a

fixed trajectory applied to a tracked mobile robot," 17th LACCEI

International Multi-Conference for Engineering, Education, and

Technology: “Industry, Innovation, And Infrastructure for Sustainable

Cities and Communities” (LACCEI), 2019, doi:

10.18687/laccei2019.1.1.357

[19] Chávez, L., Cortez, A., Vinces, L. (2022). A Strategy of Potential Fields

and Neural Networks in the Control of an Autonomous Vehicle Within

Dangerous Environments. In: Iano, Y., Saotome, O., Kemper Vásquez,

G.L., Cotrim Pezzuto, C., Arthur, R., Gomes de Oliveira, G. (eds)

Proceedings of the 7th Brazilian Technology Symposium (BTSym’21).
BTSym 2021. Smart Innovation, Systems and Technologies, vol 295.

Springer, Cham. https://doi.org/10.1007/978-3-031-08545-1_43

[20] J. Nuñez, N. Rivas and L. Vinces, "A design of an autonomous mobile

robot base with omnidirectional wheels and plane-based navigation with

Lidar sensor," 2022 Congreso Internacional de Innovación y Tendencias

en Ingeniería (CONIITI), Bogota, Colombia, 2022, pp. 1-4, doi:

10.1109/CONIITI57704.2022.9953628.

[21] B. Díaz, N. Pacheco and L. Vinces, "Integration of a robotic arm

Lynxmotion to a Robotino Festo through a Raspberry Pi 4," 2022 IEEE

International Conference on Automation/XXV Congress of the Chilean

Association of Automatic Control (ICA-ACCA), Curicó, Chile, 2022, pp.

1-5, doi: 10.1109/ICA-ACCA56767.2022.10005932.

https://doi.org/10.1007/978-3-031-08545-1_43

